Acuvim-L Series Power Meter

User's Manual

Copyright ${ }^{\ominus} 2017$ V3.03

This manual may not be altered or reproduced in whole or in part by any means without the expressed written consent of Accuenergy.

The information contained in this document is believed to be accurate at the time of publication, however, Accuenergy assumes no responsibility for any errors which may appear here and reserves the right to make changes without notice. Please ask the local representative for latest product specifications before ordering.

[Document \#1030E2303 Revision Date: Jan., 2017]

Please read this manual carefully before installation, operation and maintenance of Acuvim-L power meter.

The following symbols in this manual and on Acuvim-L series meters are used to provide warning of danger or risk during the installation and operation of the meters.

Electric Shock Symbol: Carries information about procedures which must be followed to reduce the risk of electric shock and danger to personal health.

Safety Alert Symbol: Carries information about circumstances which if not considered may result in injury or death.

UL) Us This mark indicates that this product is UL listed. LISTED

Installation and maintenance of the Acuvim-L power meter should only be performed by qualified, competent professionals who have received training and should have experience with high voltage and current device.

Accuenergy shall not be responsible or liable for any damages caused by improper meter installation and/or operation.

Content

Chapter 1 Introduction 1
1.1 Functionality -2
1.2 Areas of Application -3
1.3 Product Series -3
Chapter 2 Installation -7
2.1 Appearance and Dimensions 10
2.2 Installation Methods 13
2.3 Wiring 16
Chapter 3 Meter Display and Parameter Settings 33
3.1 Display Panel and Keys 34
3.2 Metering Data 36
3.3 Statistics Data 44
3.4 Demand Data 47
3.5 Harmonic Data 49
3.6 Parameter Settings interface 51
3.7 System information interface 61
3.8 Page Recovery Function 69
Chapter 4 Function and Tools Software 71
4.1 Basic Analog Measurements -72
4.2 Max/Min 75
4.3 Harmonics and Power Quality Analysis 76
4.4 Expanded I/O Module 78
4.5 Extended Communication Block 78
4.6 TOU Block 78
4.7 Daily Energy 84
4.8 Power Quality Eventlog 85
4.9 Alarm 86
4.10 Seal 90
Chapter 5 Communication 97
5.1 Modbus Protocol Introduction 98
5.2 Communication Format 102
5.3 Data Address Table and Application Details 106
Appedix 169
Appendix A Technical data and specifications 170
Appendix B Ordering Information 173
Appendix C Revision History 175

Starting!

Congratulations!

You have purchased an advanced, versatile and multifunction power meter. This meter can work as a remote terminal unit (RTU) that contributes to your system's stability and reliability by providing real-time power quality monitoring and analysis. When you open the package, you will find the following items:

1. Acuvim-L power meter	1
2. Terminal Blocks	3 (2 for basic model)
3. [INSERT] Installation Clips	4
4. Product Disk (Manual, Warranty, Software)	1
5. Additional documentation (Quick Setup Guide, Calibration Certificate)	2

To avoid complications, please read this manual carefully before installation and operation of the Acuvim L series meter.

Chapter 1 Introduction
Chapter 2 Installation and Wiring
Chapter 3 Meter Display and Parameter Settings
Chapter 4 Detailed Functions and Software
Chapter 5 Communication
Appendix Technical Data, Specifications and Ordering Information

Chapter 1 Introduction

1.1 Functionality
1.2 Areas of Application
1.3 Meter Overview

1.1 Functionality

- Multifunction, high accuracy

Acuvim-L series three-phase multi-function power meter on the advanced microprocessor and high-precision ADC technology platform combined with digital signal processing for voltage, current, active, reactive, apparent power and energy were also measured and analyzed. Extended digital outputs and RS485 communication interface can output pulse energy, event alarms, remote data collection and control functions, along with power sharing function. Largescreen, high-definition LCD fully meet your visual requirements, elegant, bright backlit display lets you in the faint light can also easily explore the measured data. Higher price allows users to experience superior performance while saving costs. High Accuracy

- Compact and Easy to Install

Acuvim-L series meter can be installed into a standard ANSI C39.1 (4" round) or an IEC 92 mm DIN (square) slot. With the 51 mm depth, the meter can be installed in a small cabin. Installation clips are used for easy installation and removal.

- Easy to use

Acuvim-L products using high-definition large character LCD display, intuitive display, clear, backlit LCD screen with high brightness, to help you easily explore the measured data in the faint light environment. All metering data and setting parameters can be accessed by using the front panel keys or via the communication port. Setting parameters are stored in the EEPROM so that content will be preserved when the meter is powered off.

- High Safety, High Reliability

Acuvim L series meter was designed according to industrial standards. It can run reliably under high power disturbance conditions. This meter has been fully tested for EMC and safety compliance in accordance with UL and IEC standards.

1.2 Application Area

Acuvim-L series can be used as front-end power automation system Acquisition Terminal (RTU), for remote data acquisition and control, power distribution system can also be used as multifunction power measuring instruments, its wide range of applications. As a result of advanced True RMS measuring method and digital signal processing technology, Acuvim-L product is ideal for harsh environment power quality non-linear load system. The main application areas are:

\author{

- Power Distribution Automation
 - Industrial Automation
 - Energy Management Systems
 - Electric Switch Gear and Control Panels - Building Automation
 - Marine Applications
}

1.3 Meter Overview

The Acuvim-L series have six standlncremental models: Acuvim-AL(basic model), Acuvim-BL(basic model + DO), Acuvim-CL(basic model + communication + extension), Acuvim-DL(basic model + communication + extension), AcuvimEL(sharing power + communication + extension) and Acuvim-KL(Simplified Acuvim-EL). Please see table 1-1 for their functionalities and details.

Table 1-1 Functions of Acuvim-L series

Function		Parameters	AL	BL	CL	DL	EL	KL
Real Time Measuring	Phase Voltage	U1, U2, U3, Ulnavg	-	-	-	\bullet	\bullet	
	Line Voltage	U12, U23, U31, Ullavg	\bullet	\bullet	\bullet	\bullet	\bullet	
	Current	I1, I2, I3, In, lavg, Itotal	-	\bullet	\bullet	\bullet	-	\bullet
	Power	P1, P2, P3, Psum	\bullet	\bullet	\bullet	-	\bullet	-
	Reactive Power	Q1, Q2, Q3, Qsum	\bullet	\bullet	\bullet	\bullet	\bullet	-
	Apparent Power	S1, S2, S3, Ssum	\bullet	\bullet	\bullet	-	-	\bullet
	Power Factor	PF1, PF2, PF3, PF	-	\bullet	-	\bullet	\bullet	
	Load Nature	L/C/R	-	-	\bullet	-	\bullet	
	Frequency	F Hz	-	-	-	-	-	

Function		Parameters	AL	BL	CL	DL	EL	KL
Energy	Active Energy	Ep_imp, Ep_exp, Ep_total, Ep_net, Ep_q1, Ep_q2, Ep_q3, Ep_q4	\bullet	\bullet	-	-	\bullet	\bullet
	Reactive Energy	Eq_imp, Eq_exp, Eq_total, Eq_net, Eq_q1, Eq_q2, Eq_q3, Eq_q4	\bullet	\bullet	-	\bullet	-	\bullet
	Apparent Energy	Es_imp, Es_exp, Es_total, Es_net, Es_q1, Es_q2, Es_q3, Es_q4	\bullet	\bullet	-	-	-	-
	Single-Phase Active Energy	Epa_imp, Epa_exp, Epb_imp, Epb_exp,Epc_imp, Epc_exp			\bullet	-	-	
	Single-Phase Reactive Energy	Eqa_imp, Eqa_exp, Eqb_imp, Eqb_exp, Eqc_imp, Eqc_exp			-	\bullet	-	
	Single-Phase Apparent Energy	Esa_imp, Esa_exp, Esb_imp, Esb_ exp, Esc_imp, Esc_exp			-	\bullet	\bullet	
	Daily Energy	Active Energy, Reactive Energy and Apparent Energy	\bullet	\bullet	-	\bullet	\bullet	\bullet
Demand	Current Demand, Current Predicted Demand	Dmd_11, Dmd_I2, Dmd_13, Dmd_ In, Dmd_la_Pre, Dmd_lb_Pre, Dmd_Ic_Pre, Dmd_In_Pre	\bullet	-	-	-	-	
	Power Demand, Power Predicted Demand	Dmd_Psum, Dmd_Qsum, Dmd_ Ssum, Dmd_Psum_Pre, Dmd_ Qsum_Pre, Dmd_Ssum_Pre	\bullet	-	-	\bullet	-	
Time	Real Time Clock	Year, Month, Day, Hour, Minute, Second	\bullet	\bullet	-	\bullet	-	\bullet
Hour	Meter Running Time	Hour	\bullet	\bullet	-	\bullet	-	\bullet
	Load Running Time	Hour	-	\bullet	\bullet	\bullet	-	\bullet
Wiring Check	Voltage/Current Wiring	Each phase of V \& l loss or error	\bullet	\bullet	-	\bullet	-	
Power Quality	Voltage Unbalance	U_unbl	-	\bullet	-	\bullet	-	
	Current Unbalance	I_unbl	-	\bullet	-	\bullet	\bullet	
	Voltage THD	THD_V1, THD_V2, THD_V3	\bullet	\bullet	\bullet	\bullet	-	
	Current THD	THD_I1,THD_I2, THD_I3, THD_IN	\bullet	\bullet	\bullet	\bullet	-	
	Individual Harmonics	Harmonics $2^{\text {nd }}$ to $31^{\text {st }}$	\bullet	\bullet	\bullet			
		Harmonics 2 ${ }^{\text {nd }}$ to $63^{\text {rd }}$				\bullet	\bullet	
	Voltage Crest Factor	Crest Factor	\bullet	\bullet	-	\bullet	-	
	TIF	THFF	\bullet	\bullet	\bullet	-	\bullet	
	Current K Factor	K Factor	\bullet	-	-	\bullet	-	

Function		Parameters	AL	BL	CL	DL	EL	KL
Sequence	Voltage/Current Sequence	Positive Sequence, Negative Sequence, Zero Sequence			\bullet	\bullet	-	
Phase Angles	Voltage/Current Phase Angles	Voltage Phase Angle, Current Phase Angle	\bullet	\bullet	\bullet	\bullet	-	
Statistics	MAX with Time Stamp, MIN with Time Stamp	Each phase of V \& I; Total of P, Q, S, PF \& F; Demand of I1, I2, I3, IN, P, Q\&S; Each phase THD of V \& I; Unbalance factor of V \& 1	-	-	-	\bullet	-	
Alarm	Over/Under Limit Alarm	V, I, P, Q, S, PF, V_THD \& I_THD Each Phaseand Total or Average; Unbalance Factor of V \& I; Load Type; Demand of I1, I2,I3, P, Q\&S; Reverse phase sequence;		\bullet	-	-	-	
Power Quality Event Logging	Power Quality Event with Time Stamp	Voltage SAG and fail, Current overflow, Phase Sequence error				-	-	
Time of Use	Energy/Max Demand	TOU, 4 Tariffs, 12 Seasons, 14 Schedules					\bullet	
	Daylight Saving Time	Two Adjustable Formats					\bullet	
	Holiday	Holiday setting up to 10 years					\bullet	
I/O	Energy Pulse Output	2 DO, configured as pulse output for kWh and kvarh, the pulse rate and width can be set		\bullet				
	IO Module	4DI, 2DO/2RO, SOE, Pulse Counter, Pulse output, Alarm output			\odot	-	\bigcirc	
Communication	RS-485	Modbus ${ }^{\ominus}$-RTU Protocol			-	\bullet	-	\bullet
	Ethernet	Modbus ${ }^{\text {- }}$ TCP, HTTP, SMTP, SNTP						
	RS-485 Module	Modbus ${ }^{\text {® }}$-RTU Protocol			\odot	\odot	\odot	
	PROFIBUS	PROFIBUS-DP/V0 Protocol			$\stackrel{\circ}{\circ}$	$\stackrel{\odot}{\circ}$	$\stackrel{\odot}{\circ}$	
Display		CD or DIN Rail	\odot	\odot	\odot	\odot	\odot	\odot
Dimensions	$96 \times 96 \times 64.3 \mathrm{~mm}$ (Opening Size: $92 \times 92 \mathrm{~mm}$)							

Note: • Possessed functions \odot Optional function Blank NA AL/BL/CL/DL models imbalance using sequence components algorithms, EL models feature amplitude algorithm. This table does not currently support the optional Ethernet module, the following functions related to the network module is also not supported.

Accuvim-L

Chapter 2 Installation

2.1 Appearance and Dimensions
2.2 Installation Methods
2.3 Wiring

Considerations When Installing Meters

- Installation of the meter must be performed by qualified personnel only, who follow standard safety precautions through the installation procedures. Those personnel should have appropriate training and experience with high voltage devices. Appropriate safety gloves, safety glasses and protective clothing are recommended.
- During normal operation, dangerous voltage may flow through many parts of the meter, including terminals, and any connected CTs (Current Transformers) and PTs (Potential Transformers), all I/O (Inputs and Outputs) modules and their circuits. All primary and secondary circuits can, at times, produce lethal voltages and currents. AVOID contact with any current-carrying surfaces.
- The meter and its I/O output channels are NOT designed as primary protection devices and shall NOT be used as primary circuit protection or in an energylimiting capacity. The meter and its I/O output channels can only be used as secondary protection. AVOID using the meter under situations where failure of the meter may cause injury or death. AVOID using the meter for any application where risk of fire may occur.
- All meter terminals should be inaccessible after installation.
- Do NOT perform Dielectric (HIPOT) test to any inputs, outputs or communication terminals. High voltage testing may damage electronic components of the meter.
- Applying more than the maximum voltage the meter and/or its modules can withstand will permanently damage the meter and/or its modules. Please refer to the specifications for all devices before applying voltages.
- When removing meter for service, use shorting blocks and fuses for voltage leads and power supply to prevent hazardous voltage conditions or damage to CTs. CT grounding is optional.
- ACCUENERGY recommends using a dry cloth to wipe the meter.

NOTE: IF THE EQUIPMENT IS USED IN A MANNER NOT SPECIFIED BY THE MANUFACTURER, THE PROTECTION PROVIDED BY THE EQUIPMENT MAY BE IMPAIRED.

NOTE: THERE IS NO REQUIRED PREVENTIVE MAINTENANCE OR INSPECTION NECESSARY FOR SAFETY. HOWEVER, ANY REPAIR OR MAINTENANCE SHOULD BE PERFORMED BY THE FACTORY.

DISCONNECT DEVICE: The following part is considered the equipment disconnect device.

A SWITCH OR CIRCUIT-BREAKER SHALL BE INCLUDED IN THE INSTALLATION. THE SWITCH SHALL BE IN CLOSE PROXIMITY TO THE EQUIPMENT AND WITHIN EASY REACH OF THE OPERATOR. THE SWITCH SHALL BE MARKED AS THE DISCONNECTING DEVICE FOR THE EQUIPMENT.

The installation method is introduced in the chapter. Please read this chapter carefully before beginning installation .

2.1 Appearance and Dimensions

Units: mm(inches)

Front View of the Display Meter and
Remote Display Unit

Gasket

Side View of the Display Meter

Side View of the Remote Display Unit

Side View of the DIN rail Meter

Fig 2-1 Appearance and dimensions

Part Name	Description
(1) LCD Display	Large bright white backlight LCD display.
(2) Front Casing	Visible portion (for display and control) after mounting onto a panel.
(3) Key	Four keys are used to select display and set.
(4) Enclosure	The Acuvim Il series meter enclosures is made of high strength anti-combustible engineering plastic.
(5) DIN rail	Used for Installation 35mm rail of the DIN rail Meter.
(6) Voltage Input Terminals	Used for voltage input.
(7) Current Input Terminals	Used for current input.
(8) Power Supply Terminals	Used for aux. power supply input.
(9) Communication Terminals	Communication output.
(®1) Interface	Used for link the remote display unit and the DIN rail meter.
(1) Installation Clip	Used for fixing the meter to the panel.
(12) Gasket	Insert the gasket in between the meter and the cutout to cover up gaps from the round hole.

IO module appearance and mechanical dimensions

Fig 2-2 structure configuration of IO modules

PROFIBUS module appearance and mechanical dimensions

Fig 2-3 structure configuration of PROFIBUS modules

2.2 Installation Methods

Environment

Please check the environmental temperature and humidity according to Acuvim-L's requirement to ensure the power meter can work well.

1. Temperature

Operation: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
2. Humidity

5\% to 95\% No condensation
3. Location

Acuvim-L power meter should be installed in a dry and dust free environment. Avoid exposing meter to excessive heat, radiation and high electrical noise source.

Installation steps

Acuvim-L series meter can be installed into a standard ANSI C39.1 (4" round) or an IEC 92 mm DIN (square) form.

1. Cut a square or round hole on the panel of the switch gear. The cutting size shows as Fig 2-4.

Fig 2-4 Panel cutting
2. Remove the clips from the meter and put Acuvim-L into the square hole from the front side.

Fig 2-5 Put the meter into the square
3. Install the clips to the meter from backside and push the clips tightly so that the meter is fixed on the panel.

Fig 2-6 Use clips to fix the meter

Module Installation:

Note: Acuvim-CL, Acuvim-DL and Acuvim-EL Power meter can connect at most one IO module, one Ethernet and one PROFIBUS module at the same time.
(1) The extend module could be installed from the bottom of the meter .
(2) The extend module is fixed on the meter by the screw.
(3) Please install the PROFIBUS module first if both IO and PROFIBUS module are selected.
(4) Please install the Ethernet module first if both 1 O and Ethernet module are selected.

Removal steps:

Unscrew the fixing screws, pull light expansion module, so that the pin and socket separately, and then clip the extension module is removed from the clamp mouth of Acuvim-CL / DL / EL meter.

Note:

1. The installation and removal to tap, light pull, or easy to damage the clamp extension.
2. Prohibited electrified installation and removal of expansion modules.

Fig 2-7 IO installation diagram

2.3 Wiring

2.3.1 Terminal Strips

There are four terminal strips at the back of the Acuvim-L series meter depending on different models. The terminal strip diagrams are shown in below. The three phase voltage and current are represented by using 1, 2, and 3 respectively. These numbers have the same meaning as A, B, and C or R, S, and T used in other literature.

Current input terminal strips

Voltage input terminal strips

Communication terminal strips

Power supply terminal strips

Digital output terminal strips

Fig 2-8 Terminal diagram of Acuvim-L

Note: Acuvim-AL does not have digital output and commnication terminal strips; Acuvim-BL has digital output terminal strip;
Acuvim-CL/DL/EL/KL have communication terminal strip;

Fig 2-9 Expansion module terminal description

!
 Danger

Only qualified personnel should perform the wiring connection. Make sure the power supply is disconnected. Failure to follow these instructions may result in severe injury or death.

Safety Earth Connection

Before setting up the meter's wiring, please make sure that the switch gear has an earth ground terminal. Connect both the meter and the switch gear ground terminals together. The following ground terminal symbol is used in this user's manual.

Fig 2-10 Safety Earth Symbol

2.3.2 Power Requirement

Auxiliary power

There are two Auxiliary Power Supply options for the Acuvim-L series meter:

1. Standard: 100~415Vac ($50 / 60 \mathrm{~Hz}$) or 100~300Vdc
2. Low Voltage DC Option: 20~60Vdc

Choose the option according to the application.
The meter's typical power consumption is very low and can be supplied by an independent source or by the measured load line. A regulator or an uninterrupted power supply (UPS) should be used under high power fluctuation conditions. Terminals for the auxiliary power supply are $11,12,13(\mathrm{~L}, \mathrm{~N}, \pm$).

The typical wiring connection is shown as Fig 2-11.

Fig 2-11 wiring connection of power supply
The wire of power supply should be AWG16~22 or $0.6 \sim 1.5 \mathrm{~mm}^{2}$.
A fuse (typical 1A/250Vac) should be used in the auxiliary power supply loop. No. 13 terminal must be connected to the ground terminal of switchgear. An isolated transformer or EMC filter should be used in the auxiliary power supply loop if there is a power quality problem in the power supply.

Fig 2-12 wiring connection of auxiliary power supply with EMC filters

Voltage input

Maximum input voltage for the Acuvim-L series meter shall not exceed 400LN/690LL VAC rms for three phase or 400LN VAC rms for single phase. Potential Transformer (PT) must be used for high voltage systems. Typical secondary output for PTs shall be less than or equal to 400 V . Please make sure to select an approprate PT to maintain the measurement accuracy of the meter.

A fuse (typical 1A) should be used in the voltage input loop. The wire for voltage input could be AWG16~22 or 0.6~1.5mm².

Note: In no circumstance should the secondary of the PT be shorted. The secondary the PT should be grounded at one end.

Please refer to the wiring diagram section for further details.

Current input

Current Transformers (CTs) are required in most engineering applications. Typical current rating for the secondary side of the CT shall be 5A (standard) or 1A. CTs
choice is very important, many related to the actual accuracy of the measured parameter. The accuracy of the CT should be better than 0.5%. The wire between CTs and the meter shall be as short as possible. The length of the wire may increase the error of the measurement.

The wire size of current input could be AWG15~16 or $1.5 \sim 2.5 \mathrm{~mm}^{2}$.
Note: The secondary side of the CT should not be open circuit in any circumstance when the power is on. There should not be any fuse or switch in the CT loop. One end of the CT loop should be connected to the ground.

Vn connection

V_{N} is the reference point of the Acuvim-L voltage input. Low wire resistance helps improve the measurement accuracy. Different system wiring modes require different V_{N} connection method. Please refer to the wiring diagram section for more details.

Three phase wiring diagram

Acuvim-L can satisfy almost all kinds of three phase wiring diagram. Please read this section carefully before choosing the wiring diagram suitable for your power system.

Voltage and current input wiring mode can be set separately in the meter parameter setting process. The voltage wiring mode can be set as 3 -phase 4 -line Wye(3LN), 3-phase 3 -line direct connection mode(3LL), 3 -phase 3 -line open delta (2LL), Single-phase 2-line(1LN), Single-phase 3-line(1LL). The current input wiring mode can be set as $3 C T, 2 C T$ and 1 CT ; Various wiring can be combined into six: 3LN-3CT(3CT or 2CT), 3LL-3CT, 2LL-3CT, 2LL-2CT, 1LL-2CT, 1LN-1CT.

2.3.3 Voltage Input Wiring

3-Phase 4-Line Wye mode (3LN)

The 3-Phase 4-Line Wye mode is popularly used in low voltage electric distribution power system. For voltage lower than 400LN/690LL Vac, power line can be connected directly to the meter's voltage input port as shown in Fig 2-13. In the high voltage input system, 3PT Wye mode is often used as in Fig 2-14. The meter should be set to 3 LN for both voltage levels.

Fig 2-13 3LN direct connection

Fig 2-14 3LN connection with 3PTs

3-Phase 3-Line direct connection mode (3LL)

In a 3-Phase 3-Line system, power line A, B and C are connected to V1, V2 and V3 directly. Vn is floated. The voltage input mode of the meter should be set to 3 LL .

Fig 2-15 3LL 3-phase 3-line direct connection

3-Phase 3-Line open Delta Mode (2LL)

Open delta wiring mode is often used in high voltage system. V2 and V_{N} connected together in this mode. The voltage input mode of the meter should be set to 2 LL for this voltage input wiring mode.

Fig 2-16 2LL with 2PTs

2.3.4 Current Input Wiring

3CT

The 3CT current wiring configuration can be used when either 3CTs are connected (as shown in Fig 2-17) or 2CTs are connected (as shown in Fig 2-18) to the system. In either case, there is current flowing through all three current terminals.

Fig 2-17 3CT

Fig 2-18 3CT

2CT
The difference between Fig.2-18 and Fig 2-19 is that no current flows through current input terminal I 21 and I 22 . The I 2 value is calculated from formula $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3=0$. The current input mode of the meter should be set to 2 CT .

Fig 2-19 2CT

1CT

If it is a three phase balance system, 1CT connection method can be used. The other two channels are calculated accordingly.

Fig 2-20 1CT

2.3.5 Frequently used wiring method

In this section, most common voltage and current wiring connection combinations are put together into different diagrams. In order to display measurement readings correctly, please select the approprate wiring diagram according your setup and application.

Current meter supports 3LN-3CT (3CT and 2CT two ways), 3LL-3CT, 2LL-3CT, 2LL$2 \mathrm{CT}, 1 \mathrm{LL}-2 \mathrm{CT}, 1 \mathrm{NN}-1 \mathrm{CT}$ seven kinds of wiring.

1. 3LN, 3CT with 3CTs (Wiring mode: 3LN, 3CT)

Fig 2-21 3LN, 3CT with 3CTs
2. 3LN, 3CT with 2CTs (Wiring mode: 3LN,3CT)

Fig 2-22 3LN, 3CT with 2CTs

3. 3LL, 3CT (Wiring mode: 3LL, 3CT)

Fig 2-23 3LL, 3CT

4. 2LL, 3CT (Wiring mode: 2LL, 3CT)

Fig 2-24 2LL, 3CT

5. 2LL, 2CT (Wiring mode: 2LL, 2CT)

Fig 2-25 2LL, 2CT

6. 1LN, 1CT (Wiring mode: 1LN, 1CT)

Fig 2-26 1LN, 1CT

7. 1LL, 2CT (Wiring mode: 1LL, 2CT)

Fig 2-27 1LL, 2CT

2.3.6 Digital Output (DO)

There are two digital outputs for Acuvim-BL. The terminals of the digital output are DO1, DO2 and DOC. The terminals of the digital output circuit of Acuvim-DL/ EL extension module are DO11, DO12, DO21, DO22. These two digital outputs can be used as energy pulse output or over/under limit alarming output. AcuvimCL/DL/EL meter with optional IO expansion modules only have the DO function.

Digital output circuit form is Photo-MOS. The simplified circuit is as below:

Fig 2-28 Digital output circuit
In Fig 2-28, when J is high, Photo-MOS light-emitting diode side no current, MOS switch is in the Up state, OUT side is high; when J is low, Photo-MOS-emitting side of the current through the diode, MOS switch is in the ON state, OUT is low. Such OUT high and low is completely controlled by the internal logic. When J issued a pulse signal, the same signal will appear in the pulse OUT terminal.
The max output voltage and current are $250 \mathrm{Vac} / 300 \mathrm{Vdc}$ and 100 mA .
DC applications, DO output terminal should be connected in parallel clamping diodes D , to prevent over-voltage during switching.
When the digital output is used as pulse energy, DO1, DO2 can be independently programmed to select the electrical energy to be output; for example, DO1 active
energy output, DO2 output reactive energy. Pulse width, pulse constant can be set.

When the digital output is used as over/under limit alarming output, the upper and lower limit of the parameter, time interval and output port can be set from the meter front.

2.3.7 Digital Input(DI)

There are 4 dry-contact digital input in extension modules respectively. The digital input circuit can be used to detect remote signals, or be used as a counter of input pulses.

Fig 2-29 DI input circuit diagram
The circuit drawing of digital input is simplified as Fig 2-29.
When the switch K is switched off, the diode side optocoupler no current through the transistor is in the OFF state, OUT side is high; when the switch K is switched on, the diode side optocoupler current is passed, the transistor is in a conducting state, OUT terminal is low. Such OUT high and low, respectively, corresponding to the K"switch off" and "switch off" state.
The wire of digital input should be chosen between AWG22~16 or $0.5 \sim 1.3 \mathrm{~mm}^{2}$.

2.3.8 Communication

Acuvim-L series meter uses RS485 serial communication and the Modbus-RTU
protocol. The terminals of communication are A, B, and $S(14,15$ and 16$)$. A is differential signal + , B is differential signal - and S is connected to the shield of twisted pair cable. The overall length of the RS485 cable connecting all devices can not exceed 1200m (4000ft). While many devices on one RS485 line connection, or using a communication from the higher baud rate will be reduced accordingly. Acuvim-L series meter can be used as a slave device of a master device such as PC, PLC, Data Collector and RTU.

If the master does not have RS485 communication port, a converter(such as a RS232/RS485 or a USB/RS485 converter) will be required. Typical RS485 network topologies include line, circle and star (wye).

Acuvim-CL/DL/EL supported expansion module also supports Modbus-RTU serial communication protocol, it can achieve with Acuvim-CL/DL/EL instrument the same communication function, and two-way communication support independent communication-related parameter settings to achieve independent communication functions.

Data transfer format is start bit + 8 data bits + parity + stop bit. NON1, NON2, Odd and EVEN could be selected in the mode of parity. NON1 represents non-parity, single stop bit; NON2 represents non-parity, double stop bit; Odd represents odd-parity, single stop bit; EVEN represents EVEN-parity, single stop bit.

In order to improve the quality of communications, now offers the following suggestions:

Quality shielded twisted pair is very important, it is recommended to use AWG22 $\left(0.6 \mathrm{~mm}^{2}\right)$ or larger diameter of the line, two strands of different colors.

The shield of the RS485 cable must be connected to the ground at one end only. Every $\mathrm{A}(+)$ should be connected to $\mathrm{A}(+), \mathrm{B}(-)$ to $\mathrm{B}(-)$, or it will influence the network, even damage the communication interface.
" T " type connection topology should be avoided. This means no new branches except from the starting point.

Keep communication cables away as much as possible from sources of electrical noise. When several devices are connected (daisy chain) to the same long communication line, an anti signal reflecting resistor (typical value 120 $2-$ 300Ω) is often used at the end of the circuit (the last meter of the chain) if the communication quality is distorted.

Use RS232/RS485 or USB/RS485 converter with optical isolated output and surge protection.

Chapter 3 Basic Operations and Applications

3.1 Display Panel and Keys
3.2 Metering Data
3.3 Statistics Display
3.4 Demand display
3.5 Harmonics data display
3.6 Parameter Settings Mode
3.7 System Information Mode
3.8 Page Recovery Function

Detailed human-machine interface of the meter will be described in this chapter. This includes viewing real-time metering data and setting parameters using different key combination.

3.1 Display Panel and Keys

The front of the Acuvim L series meter consists of an LCD screen and four control keys. All the display segments are illustrated in Fig 3-1. Users should note that all the segments will not display in a single page under normal conditions.

Fig 3-1 All display segments

Table 3-1 Some symbols on the LCD screen

SN	display	Description	
1	Display mode indication	Shows different modes on the display area. "Meter" for real-time measurement; "Max/Min" for statistic data; "Demand" for power demand data; "Harmonic" for harmonic data; "Setting" for parameters setting.	
2	Parameter name or ordinal	Display Parameter name or ordinal	
3	Unbalance, THD, MAX, MIN	"Unbalance" for unbalance of the voltage and current; "THD" for total harmonics distortion; "MAX" for maximum and "MIN" for minimum	
4	Load rate	Displays the percentage of load current to the nominal current.	
5	Four quadrant icon $\\|$ Load type icon - -1ト	\#quadrant of the system power; inductive load; -H -: capacitive load.	
6	Communication icon 或	No icon: no communication One icon: query sent Two icons: query sent and response received	
7	Data Display area	The contents of the display data in the region	
8	Unit display area	Display Data Unit	
9	Pulse output status icon	Display pulse output status	
10	WIFI module icon	Display WIFI module status	
11	Expansion Module icon	Display expansion module status	
12	Profibus connection icon	Icon: Profibus modules	
13	Ethernet connection icon	Icon: Ethernet modules	
14	Current rates icon	T1, T2, T3, T4, respectively, sharp, peak, valley and normal four seasons rates	
15	Time icon	Icon: the current data region display a time value	

There are five dedicated keys on the meter: H, P, E, V/A, and Seal keys (seals meter with the key, ordinary meter no). Through these four keys to achieve different interface switching and parameter settings.
In any screen, press the V/A key and E key simultaneously will enter the system information display.

In any screen, press the V/A and H keys simultaneously will enter the display mode selection. Select the display module in this interface. In this case, press H , invalid operation; press P or E key, select the functional modules; Press V/A key to confirm the selection module, and enter the function module. Operation flow is shown below.

Note: If the LCD backlight is off, pressing any key one time will bring the backlight on.

Fig 3-2 Operation mode selection flow chart

3.2 Metering Data

Press H and V / A simultaneously will activate the display mode selection and the cursor will flash. Press P or E to move the cursor left or right to "Meter", then press V/A, and you will enter the metering mode. The following table shows the contents of the display.

Table 3-2 Metering data display table

Module Name		Display Interface	Remark Explanation The default page: First line: the avg of line voltage; Second line: system active power;Third line: avg of current; Fourth line: system Power Factor.
Voltage Current Module		Default page	
		Three phase voltage \& avg	
		Three phase line voltage \& avg	
		Three phase current \& neutral current	
		Three phase current \& avg	
		Three phase current \& total current value	
Power Module		Three phase \& system active power	
		Three phase \& system reactive power	
		Three phase \& system apparent power	
		Three phase \& system Power Factor	
		System power	
		Power factor and frequency	
Real-time Energy Module	System Active Energy	System import active energy	
		System exports active energy	
		System total active energy	
		System net active energy	
	System Reactive Energy	System import reactive energy	
		System exports reactive energy	
		System reactive total energy	
		System reactive net energy	
	System Apparent Energy	System import apparent energy	
		System exports apparent energy	
		System apparent total energy	
		System apparent net energy	
Unbalance	Unbalance display interface		
	Voltage phase angle display interface		
	Current phase angle display interface		

Module Name			Display Interface	Remark Explanation
Current month TOUenergy(Accumulated)	Total	Active Energy	Import active energy	In this module, press the V/A key to switch to TOU demand interface.
			Export active energy	
			Active total energy	
			Active net energy	
			Inductive reactive energy	
		Reactive	Capacitive reactive energy	
		Energy	Reactive total energy	
			Reactive net energy	
			Import apparent energy	
		Apparent	Export apparent energy	
		Energy	Apparent total energy	
			Apparent net energy	
	Shape	Ditto	Ditto	
	Peak	Ditto	Ditto	
	Normal	Ditto	Ditto	
	Valley	Ditto	Ditto	
```Prior month sharing time energy (Accumulated)```	Page structure of power sharing with the previous month			
```Current month TOU energy (Incremental)```	Page structure of power sharing with the previous month			
Prior month TOU energy (Incremental)	Page structure of power sharing with the previous month			

3.2.1 Voltage and current display

Press V/A to read voltage and current in the metering area. The screen will roll to the next page as you press V/A each time. It will go back to the first screen if you press V/A at the last screen.
The following figure shows how it rolls:

Fig 3-3 Voltage and current display module key operation
Note: When the meter is set to " 2 LL " or " 3 LL ", there is no three phase voltage \& AVG and three phase current \& neutral current display; when the meter is set " 1 LN ", there is only A phase voltage and A phase current display; when the meter is set " 1 LL ", there is no C phase voltage and C phase current display.
3.2.2 Power display

Power display screen, press the P key to turn.
The following figure shows the sequence:

Fig 3-4 Power module key operation flowchart
Note: When the meter is set to " 2 LL " or " 3 LL ", only the system power and system power \& frequency will be displayed. When the meter is set to " 1 LN ", only A phase power and power factor will be display. When the meter is set to " 1 LL ", there is no C phase power and C phase power factor display.
3.2.3 Real-time energy display

Press E key, display real-time energy. The screen will roll to the next page as you press E each time. It will go back to the first screen if you press E at the last screen.

The following figure shows how it rolls:

Fig 3-5 Energy display key operation flowchart

3.2.4 Phase angle and unbalance display

Press H, display phase angles and unbalance data. The screen will roll to the next page as you press H each time. It will go back to the first screen if you press H at the last screen.

The following figure shows how it rolls:

Fig 3-6 Unbalance key operation

Voltage stands for line-to-line voltage when the wiring setting is " 2 LL " or " 3 LL " and for line-to-neutral voltage when other wiring settings. When the meter is set to " 1 LN ", there is only phase A current to phase A voltage angle display. When the meter is set to " 1 LL ", there is no phase C voltage or current to phase A voltage angle factor display. In the Rogowski coil, don't support the phase angle and the unbalance function.
3.2.5 TOU energy display

TOU energy parameters display, in the metering module, press the press the P key and V/A key simultaneously will enter the TOU energy display module.In this module key operations shown in Fig 3-7. TOU rates are divided into the total, sharp, peak, valley and normal. H key: turn between total, sharp, peak, valley and normal; P key: turn over the Current Month TOU (Accumulated energy), Current Month TOU (Incremental energy), Prior Month TOU (Accumulated energy) and Prior Month TOU (Incremental energy); V/A key: switch to the appropriate TOU demand maximum display interface. E key: flip over each module.

Fig 3-7 the operation of TOU energy

3.3 Statistics Display

In the Max/Min statistics display module, display contents see the table below.
Table 3-3 Max/Min statistics display table

Module Name	Display Interface	Remark Instruction
Max/Min of the Voltage and Current	the Max value of Phase Voltage	
	the Min value of Phase Voltage	
	the Max value of Line Voltage	
	the Min value of Line Voltage	
	the Max value of Current	
	the Min value of Current	

Module Name	Display Interface	Remark Instruction
Max/Min of the Power	the Max value of System Power	
	the Min value of System Power	
	the Max value of Power Factor, Frequency	
	the Min value of Power Factor, Frequency	
	the Max value of Power Demand	
	the Max value of Current Demand	
Max/Min of the THD	the Max value of Voltage Harmonic	
	the Min value of Voltage Harmonic	
	the Max value of Current Harmonic	
	the Min value of Current Harmonic	
	the Max value of Unbalance	
	the Min value of Unbalance	

3.3.1 The keys operation of voltage/current the most value module

The following figure shows the sequence:

Fig 3-8 Voltage/current the most value keys operation flowchart
Note: When the voltage wiring for the $2 \mathrm{LL} / 3 \mathrm{LL}$, there is no the max/min value of phase voltage display; when the voltage wiring is set to 1LL, phase voltage: No C-phase voltage; line voltage, no Ubc and Uca display; current: no C phase
current; when the voltage wiring set 1LN, phase voltage: only A phase display, line voltage: no display, current: only A phase display.
3.3.2 Power the most value display

The following figure shows the sequence:

Fig 3-9 Power the most value display module keys operation flowchart
Note: When the voltage wiring for the 1LL, no voltage and current phase imbalance display, no C-phase current demand display;

When the voltage wiring set 1LN, only the A-phase current demand.
3.3.3 The keys operation of harmonic distortion the most value module The following figure shows the sequence:

Fig 3-10 The keys operation of harmonic distortion the most value module
Note: When the voltage wiring for the 1LL, no Uc, Ic THD; when the voltage wiring set 1LN, only show Ua and la THD.

3.4 Demand display

In the demand display module, display current demand, voltage demand, current forecasted demand and voltage forecasted demand parameters. Interface allocation see table below.

Table 3-4 Demand display table

Module Name	Display Interface	Remark Instruction
Real-Time Demand Display Module	Power Demand Interface	
	Current Demand Interface	
	Power Forecasted Demand Interface	
	Current Forecasted Demand Interface	

Module Name		Display Interface	Remark Instruction
TOU Demand Max	Total	Power Import Demand Max Interface	In this module, press the V/A key to switch directly to the appropriate sharing of electrical interface
		Power Export Demand Max Interface	
		Current Demand Max Interface	
	Sharp	Ditto	
	Peak	Ditto	
	Valley	Ditto	
	Normal	Ditto	

3.4.1 Demand dispaly module keys operation

H key: flip. The following figure shows the sequence:

Fig 3-11 Demand dispaly module keys operation
Note: When the voltage wiring for 1LL, no C-phase current demand; when the voltage wiring set 1 LN , no B, C phase current demand.

3.4.2 TOU Maximum Demand

In demand module, press the P key and V/A key to enter the TOU demand module, the keys operation as follows:
P key: between total, sharp, peak, valley and normal rates switching ;
E key: flip In each page rates;
V/A key: Switch to TOU power display interface.

Fig 3-12 TOU demand keys operation

3.5 Harmonics data display

In the harmonic display module, the display content see the following table:
Table 3-5 Harmonic display table

Module Name	Display Interface		Remark Instruction
Basic Parameters	Voltage THD Rate		
	Voltage Odd Harmonic Distortion Rate		
	Voltage Even Harmonic Distortion Rate		
	Voltage Crest Factor		
	Voltage/Current Harmonics Form Factor		
	Current THD Rate		
	Average Current Harmonic Distortion Rate		
	Current Odd Harmonic Distortion Rate		
	Current Even Harmonic Distortion Rate		
	Current K Factor		
Harmonic Ratio Data	Voltage Each Harmonic	Voltage 2 ${ }^{\text {nd }}$ Harmonic Ratio	
		
		Voltage 63 ${ }^{\text {rd }}$ Harmonic Ratio	
	Current Each Harmonic	Current 2 ${ }^{\text {nd }}$ Harmonic Ratio	
		\ldots	
		Current 63 ${ }^{\text {rd }}$ Harmonic Ratio	

Note:
1: $A L, B L$ and $C L$ support $2^{\text {nd }} \sim 31^{\text {st }}$ harmonics, EL and DL support $2^{\text {nd }} \sim 63^{\text {rd }}$ harmonics, KL does not support the harmonics;
2: Rogowski coil does not support harmonic function;
3: If the IN is calculated, the parameters which about the IN harmonic parameters are blocked;

3.5.1 Basic parameters key operation

H key: flip. The following figure shows the sequence:

Fig 3-13 Harmonic basic parameter displays key operational processes
Note: When the voltage wiring is 1 LN , there is only the parameters about phase A is shown. when the voltage wiring is set to 1LL: each display screen does not display the C-phase content.

3.5.2 Harmonic Ratio Data display

E key: add by one when press E each time;
P key: add by ten when press P each time;
V/A key: between the voltage parameters and current parameters switch.
The following figure shows the sequence:

Fig 3-14 Each harmonic key operation flowchart

3.6 Parameter setting mode

In setting mode, there are four module, I/O module, system module, power quality module and network module. The table shows the setting parameters as follow.

Table 3-6 Setting the interface display table

Module Name	Display Interface	Page Number	Setting Range
Basic Settings module	Address of communication channel 1	S01	$1 \sim 247$
	Baud rate of communication channel 1	S 02	$1200 / 2400 / 4800 / 9600 / 19200 / 38$ $400 / 57600$
	Parity mode of communication channel 1	S 03	EVEN: Even parity; Odd: Odd parity; non1: no parity 1 stop bit; non2: No parity Stop bit double;
	Voltage wiring set	S 04	3LN/3LL/2LL/1LN/1LL

Module Name	Display Interface	Page Number	Setting Range
Basic Settings module	Current wiring set	S05	3CT/2CT/1CT
	11 Direction	S06	P: Positive N: Negative
	12 Direction	S07	Ditto
	13 Direction	S08	Ditto
	PT2 setting	S09	$50.0 \sim 400.0$
	PT1 setting	S10	PT2 ~ 1000000.0
	CT2 setting	S11	See Note 1
	CT1 setting	S12	$1 \sim 5000.0$
	CTN2 setting	S13	See Note 1
	CTN1 setting	S14	$1 \sim 5000.0$
	In definition	S15	0: Calculation 1: Measurement
	Reactive power is defined settings	S16	0 :True reactive; 1 : Generalized reactive
	Turn on the Backlight	S17	$0 \sim 120$ (min)
	Demand calculation mode selection	S18	0 : sliding block method; 1: Fixed block method; 2: Rolling block method; 3:Thermal Demand Method
	Demand slide time setting	S19	$1 \sim 30$ (min)
	Sub-Interval	S20	$1 \sim 30$ (min)
	VAR/PF statute setting	S21	IEEE/IEC
	Energy metering settings	S22	Prl: primary; SEC: Secondary side
	Clear demand	S23	no: Not cleared; yes: Cleared
	Clear Max and Min	S24	no: Not cleared; yes: Cleared
	Clear energy enable	S25	Dis: Disable; En: Enable
	Acknowledgement to clear energy	S26	no: Not cleared; yes: Cleared
	Clear time setting	S27	no: Not cleared; yes: Cleared
	Address of communication channel 2	S28	1~247
	Baud rate of communication channel 2	S29	$1200 / 2400 / 4800 / 9600 / 19200 / 38$ $400 / 57600$

Module Name	Display Interface	Page Number	Setting Range
Basic Settings module	Parity type of communication channel 2	S30	EVEN: Even parity; Odd: Odd parity; non1: no parity 1 stop bit; non2: No parity Stop bit double;
	Enable wiring check	S31	Dis: Disable; En: Enable
	Expected Load Type	S32	C/L/r
	Expected Power Factor	S33	-1000 ~ 1000
	Setting password protection	S34	0000 ~ 9999
IO module settings	DI Type	101	See Note 2
	DI Pulse Constant	102	1 ~ 56635
	DI Counters Clear	103	no: Not cleared; yes: Cleared
	Do1 function selection	104	0 : Pulse energy output; 1: Alarm 1 Output; 2: Alarm 2 Output; 3: Alarm 1 or 2 Output; 4: Communication control
	Do2 function selection	105	Ditto
	DO pulse constant	106	1 ~ 60000
	DO pulse width setting	107	See Note 3
	Do1 output resistor selection	108	0: None; 1: Ep_imp; 2: Ep_exp; 3: Eq_imp;4:Eq_exp
	Do2 output resistor selection	109	Ditto
	Alarm delay time setting	110	See Note 4
	The first alarm variable selection	111	$0 \sim 51$ (see address list)
	The first alarm upper and lower limit selection	112	$0 \sim 51$ (see address list)
	The first alarm threshold settings	113	See Note 5
	The second alarm variable selection	114	$0 \sim 51$ (see address list)
	The second alarm upper and lower limit selection	115	0 ~ 51 (see address list)
	Setting a second alarm threshold	116	See Note 5
	Alarm backlit selection	117	On: Alarm back blink; OFF: Alarm backlight does not blink
	Clear alarm log	118	no: Not cleared; yes: Cleared
	DO output model by communication control	119	1: Level; 2: Pulse

Module Name	Display Interface	Page Number	Setting Range
Power Quality settings	Rated voltage settings	Q1	$50 \sim 400 \mathrm{~V}$
	Voltage fail value	Q2	$20 \sim 100 \%$
	Voltage sag value	Q3	$20 \sim 100 \%$
	Rated Current settings	Q4	$500 \sim 5000 \mathrm{~mA}$
	Set the current value of the overcurrent	Q5	50 ~ 150\%
	Sets the number of half-cycle	Q6	4 ~ 200
	Clear power quality eventlog	Q7	no: Not cleared; yes: Cleared
Module Network Settings Module	DHCP settings	N1	0: Static IP; 1: Dynamic IP
	IP Address setting	N2	-
	Submask	N3	-
	Gateway address	N4	-
	DNS Settings	N5	-
	MODBUS TCP/IP port settings	N6	2000 ~ 5999
	Http port settings	N7	6000 ~ 9999
	Language selection Settings	N8	-
	Network Reset selection	N9	-

Note:

1: When the CT type of the meter is $5 A$ and $1 A$, supports write (1 or 5); when the CT type of the meter if 200 mA , choose from 80,100 and 200 . It does not allow to modified when the others CT type;
2: 0x0 ~ 0xF, bit0 \sim bit3 correspond DI1 ~ DI4, where 1 represents the pulse count, 0 represents SOE state;
3: 20 ~ 3000ms;
4: $0 \sim 255$ (300 ms), for example, set a value of 1 , the actual alarm delay of 300 ms ;
5: Depending on the parameters of the alarm, set the threshold range of different table below.

Number	Parameter Name	Setting Range	
1	F	0~655.35 HZ	
2/3/4/5/6/7/8/9	$U_{A} / U_{B} / U_{C} / U_{\text {inava }} / U_{A-B} / U B-C / U_{C-A} / U_{\text {lava }}$	0~6553.5 V	
10/11/12/13(14)/15/16	$I_{A} / I_{B} / I_{C} / I_{N} / I_{\text {atal }} / I_{\text {ava }}$	0~65.535 A	
17/18/19/20/35	$\mathrm{P}_{A} / \mathrm{P}_{\mathrm{B}} / \mathrm{P}_{\mathrm{C}} / \mathrm{P}_{\text {CON }} / \mathrm{P}_{\text {DEMA }}$	-32.768~32.768kw	
21/22/23/24/36	$\mathrm{Q}_{A} / \mathrm{Q}_{\mathrm{B}} / \mathrm{Q}_{C} / \mathrm{Q}_{\text {CON }} / \mathrm{Q}_{\text {DEMA }}$	-32.768~32.768kvar	
25/26/27/28/37	$\mathrm{S}_{A} / \mathrm{S}_{8} / \mathrm{S}_{C} / \mathrm{S}_{\text {CON }} / \mathrm{S}_{\text {DFMA }}$	0~65.535KVA	
29/30/31/32	$\mathrm{PF}_{\mathrm{A}} / \mathrm{PF}_{\mathrm{B}} / \mathrm{PF}_{\mathrm{C}} / \mathrm{PF}_{\text {con }}$	-1.000 ~ 1.000	
33/34	$U_{\text {unbl }} / \\|_{\text {unbl }}$	0 ~ 100.0\%	
38/39/40/41	$I_{\text {A DEMA }} / I_{\text {B DEMA }} / I_{\text {C DEMA }} / I_{\text {D DEMA }}$	$0 \sim 65.535 \mathrm{~A}$	
$\begin{gathered} \hline 42 / 43 / 44 / 45 / 46 / \\ 47 / 48 / 49 / 50 \\ \hline \end{gathered}$	THD_V1/THD_V2/THD_V3/THD_V/THD_I1/ THD_I2/THD_I3/THD_IN/THD_I	0 ~ 655.35\%	
51	Reverse phase sequence	0/1	

Press H and V/A simultaneously will activate the display mode selection and the cursor will flash. Press P or E to move the cursor left or right to "Setting", then press V/A key and you will enter the parameter setting mode.
First, the device address will appear for several seconds and then go to the password inquiry page. "Password" is the key to the parameter setting mode and only valid password will help you to go through and use the meter setting. This function helps to prevent the mis-operation and unauthorized people to modify the meter parameters. There are 4 digits of password in the meter, which can be set from " 0000 " to " 9999 " with the default value of " 0000 ". User should input the right password and press V/A key to go through to the parameter selection page; otherwise it will stay at the password inquiry page.
Key functions when inputting password:
Press H , move the flashing cursor to the next position.
Press P, the flashing number will add one.
Press E, the flashing number will minus one.
Press V/A, confirm the password.

In the parameter setting mode, parameters, such as system basic parameters, expanded I/O module parameters, power quality parameters and network module parameters can be read and modified.
3.6.1 Key operation setting module

E key and P key, move the cursor downwards and upwards.
V/A key: choose the parameter and enter the parameter modify mode.
Fig 3-15 shows key processes:

Fig 3-15 Settings key module operation flowchart
Setting module selection screen, as shown in Fig 3-16. Select the function to be set at this interface. The first digital district IO (IO settings); the second line shows the sys (System basic settings); the third row shows nEt (network settings is not supported); The fourth line shows pq (power quality setting).

Fig 3-16 Interface module selection
Note: AL/KL only support system based settings; BL only supports IO and SYS settings; CL only supports IO, SYS and net set; DL and EL support all setup functions.

3.6.2 System basic setting module

Press H , back to parameter selection mode.
The screen will roll to the next page each time when press E and will roll back to the first page when press E at the last page.
The screen will roll to the last page each time when press P and will roll back to the last page when press P at the first page.
Press V/A, confirm the parameter you want to modify, enter the modify mode. Basic Settings module key operation flow chart shown in Fig 3-17:

Fig 3-17 Basic settings module key operational processes

Note: AL/BL does not support the communication-related settings; KL does not support automatic wiring settings judgment, do not support demand-related settings, do not support the VAR/PF setting statute, does not support a second way of peer-related settings.

3.6.3 10 interface settings and key operations

IO setting interface key operation flow chart shown below.

Fig 3-18 IO module settings key operation flowchart
Note: BL does not support associated with DI settings.

Press H , back to parameter selection mode.
The screen will roll to the next page each time when press E and will roll back to the first page when press E at the last page.
The screen will roll to the last page each time when press P and will roll back to the last page when press P at the first page.
Press V/A, confirm the parameter you want to modify, enter the modify mode.
3.6.4 Power quality settings button and page display

Power quality setting key operation process as shown below:

Fig 3-19 Power quality module flip operation
Press H , back to parameter selection mode.
The screen will roll to the next page each time when press E and will roll back to the first page when press E at the last page.
The screen will roll to the last page each time when press P and will roll back to the last page when press P at the first page.
Press V/A, confirm the parameter you want to modify, enter the modify mode.

3.7 System Information Interface

In the system information module, the displayed content includes: version information, device clock, hardware version and software version, and so on.

In any interface, press E and V/A simultaneously will enter the system information module.

Module Name	Display Interface	Remark Instruction
Time information	System Clock	
	Total running time of the meter	
	Load running time	
	Result of Wiring Check	Meter running time
	Voltage phase loss	Voltage wiring error
	Current wiring error	
	Reverse current	
system information	leter type and version information	
	State seal	
DI counter/state	DI1 counter/state	
	DI2 counter/state	
	DI3 counter/state	
	DI4 counter/state	

Press V/A key, display system clock, and the screen will roll to the next page as you press V/A each time. It will go back to the first screen if you press V/A at the last screen.

Press P key, display the result of wiring check, and the screen will roll to the next page as you press P each time. It will go back to the first screen if you press P at the last screen.

Press E key, display system information, and the screen will roll to the next page as you press E each time. It will go back to the first screen if you press E at the last screen.

Press H key, display DI counter, and the screen will roll to the next page as you press H each time. It will go back to the first screen if you press H at the last screen.

Time information module key operation process as shown below:

Fig 3-20 Time information key operation

The following figure shows the system time. As shown in Fig 3-21, the time is 2015-12-10 15:24:27.

Fig 3-21 System time display
The following figure shows the running time, the range of running time is 0 ~ 9999999.99 hours. As shown in Fig 3-22, the running time is 3156879.01 hours.

Fig 3-22 Meter run time display

The following figure shows the load time, the range of load time is 0 ~ 9999999.99 hours. As shown in Fig 3-23, the displayed time is 1267834.87 hours.

Fig 3-23 Load running time display

3.7.1 Result of wiring check

The following figure shows how it rolls.

Fig 3-24 Wiring judgment result shows the key processes

The following figure shows the result of wiring check about the phase voltage loss. As shown in Fig 3-25, B phase and C phase loss voltage.

Fig 3-25 B phase and C phase loss
3.7.2 System information

Version information Module key operational processes, as shown below.

Fig 3-26 System information key operation

Instrument type and version information display interface, as shown below. The first line shows the type of meter, the first two letters indicate the type of meter is displayed or rail type, PF display indicates the displayed type; the third character represents the CT type, 0: 5A, 1: 1A, 2 : 333 mV type, 3: Rope-CT type, 4: 200mA type; 5: 6.68mA type. the fourth character represents the meter type, 1: AL, 2: BL, 3: CL, 4: DL, 5: EL, 6: KL . The second line shows the hardware version, the third line shows the software version. The fourth line no display. Displayed interface shown in Fig $3-27$. The figure represents the information, display type -333 mV type - EL meter, hardware version 3.01 software version 3.01 .

Fig 3-27 Version information display interface

Seal status page, as shown below. Display OPEn expressed seal is opened, display seal indicates the seal is closed.

Fig 3-28 Seal status display

3.7.3 DI count/state display

The first line displays the name of DI, DI1 ~ DI4; second, third and four lines display DI counting the number of display range $0 \sim 4294967295$, or the sate of DI (oN/oFF)

Fig 3-29 DI count display

3.8 Page Recovery Function

Acuvim-L has the page recovery function, which means that the meter stores the current display page in the non-volatile memory during power off and reloads the page when power recovers.

Accuvim-L

Chapter 4 Function and Tools Software

4.1 Basic Analog Measurements
4.2 Max/Min
4.3 Harmonic and Power Quality Analysis
4.4 Expanded I/O Module
4.5 Extended Communication Block
4.6 TOU Block
4.7 Power Quality Eventlog
4.8 Alarm
4.9 Seal

The function of Acuvim-L is very powerful; it can measure almost all the parameters in the power system. Some of its function may not be controlled by simply pressing the keys, so we made this software to go with it. To express clearly, we'll introduce functions with the help of the software interface in this chapter. The version of the software you get may be advanced or it may differ somewhere, please refer to the manual that goes with it.

4.1 Basic Analog Measurements

Acuvim-L can measure voltage, current, power, frequency, power factor and demand etc with high accuracy, shown as below:

Fig 4-1 Basic measurement parameter display interface
In this interface, users can real-time observation of various measurements, such as phase voltage, line voltage, current, active power, reactive power, apparent power, power factor and demand-related parameters, and so on.

The correct parameter setting is the premise of accurate measurement. The settings page is shown in Fig 4-2.

Fig 4-2 Basic set of software tools display parameters

We would like to introduce the setting of demand, energy and current direction adjustment.

1. Demand

Types of Demand calculated in Acuvim-L are: Sliding Window Demand, Fixed Window Demand, Rolling Window Demand, and Thermal Demand.

a. Sliding Window Demand

You select an interval from 1 to 30 minutes, which is the period of the calculation. The demand updates every 1 minute as the window sliding once.
b. Fixed Window Demand

You select a period time from 1 to 30 minutes, which is the period of the calculation. The demand updates once as the period time.
c. Rolling Window Demand

You select a period time from 1 to 30 minutes, which is the period of the calculation. And you select an interval time, which is the rolling time. The period time is must the rolling time integer times. The demand updates once as the rolling time over.
d. Thermal Demand

Thermal demand method calculates the demand based on a thermal response which mimics the thermal demand meter. You select the period for the calculation and the demands update at the end of each period.

2. Energy

Various kinds of energy will accumulated in Acuvim-L. Real time energy: the accumulation of energy for the kWh, kvarh and kVAh since cleared last time.
a. There are two ways to calculate reactive energy(power):

Mode 0: real reactive energy: $Q=\sqrt{S^{2}-P^{2}-D^{2}}$
Mode 1: general reactive energy: $Q=\sqrt{S^{2}-P^{2}}$
b. User can choose primary energy or secondary energy by pressing key or via communication.

Note:

1). The energy will be reset when user switch the mode of energy calculation (primary energy or second energy). And accumulate the energy again.
2). Degree in electrical Acuvim-L series meter display is divided into primary energy or secondary energy, however, the degree of electrical pulses via IO module output of only the secondary energy power pulse.

3. Current Direction Adjustment

The normal current direction is from port 1 to port 2, but sometimes we may make wrong wiring. To adjust direction of current, the three current directions can be set as "Negative"which means reversing 180 degrees and "Positive" which means normal. It is easy to get the right data without changing the wiring.

4.2 Max/Min

Fig 4-3 statistics dispaly

Acuvim-L can make statistics of the maximum and minimum values of phase/ line voltage, currents, power, reactive power, apparent power, power factor, frequency, demand, unbalance factor, THD as well as the time they occur. All the data will be stored in non-volatile memory so that they will not lose when the power supply is off. All the data can be accessed or be cleared via communication and by panel keys with the exception of time stamps.

4.3 Harmonics and Power Quality Analysis

1. Harmonics

Acuvim-L can be measure and analyze THD, Harmonics (2nd to 31st for AL/BL/CL, 2nd to 63rd for DL/EL), even harmonic, odd harmonic, Crest Factor, THFF, K factor etc. They are shown in Fig 4-4. KL is not support harmonic functions.

(1) Acuview 3.4.8 -- Accuenergy Corporation - [Acuvim-EL (COM17.1)]										
\square Operation Settings Iools Window Help										
Readings Settinge										
,.. Real-Time Meterng .. Digital $1 / O$ - Energy - Real-Tme Current Month TOU Prior Month TCU Maxmum Demand - Harmonics THD - Voltage Spectrum Curreit Spectrum - Sequence Component - Phase Angles Max and Min .- SCE Log -. Alarm Log -- PQ Event Log - Device Information	T-D Volts AN/AB TH-D Volts BN/CA T-D volts av/ac TH-D Volts Average		T-DIA		0.00\%		THDI 4	0.00\%		
			thide thilic T-D I Average		0.00\%					
			0.00 \%							
			0.00\%							
	Odd THD V A	0.00\%			Odd T-D V B	0.00\%	Odd THD V C	0.00\%		
	Event-DVA	0.00\%			Ever Thi Vb	0.00\%	Even THD Y C	0.00\%		
	T-FFVA	0.00\%	THFFV V	0.00\%	theryc	0.00\%				
	CrestFactor VA	0.000	Crest factor VB	0.000	Crest Factor V C	0.000				
	Odd THD I A	0.00\%	Odd T-DIE	0. 00%	Odd THILIC	0.00 \%	OddthD 14	0. 00%		
	Even T-DIA	0.00\%	Eventhdis	0.00\%	Even THDIC	0.00\%	Even THD 14	0.00\%		
	KFactor IA	0.0	KFactor IB	0.0	KFactor IC	0.0	KFactor I 4	0.0		

Fig 4-4 Power quality display interface
2. Phase angle

Phase angle indicates the angle between U1 and other voltage and current parameters. It ranges from 0 to 360 degrees. This function is to help user find out the relationship between all input signals avoiding wrong wiring. When it is set
to " 2 LL " or " 3 LL ", it gives out the phase angle of Ubc, Uca, $\mathrm{i} 1, \mathrm{i} 2$, i 3 corresponding to Uab and $\mathrm{Ub}, \mathrm{Uc}, \mathrm{i} 1, \mathrm{i} 2, \mathrm{i} 3$ corresponding to u 1 for other settings. They are show in Fig 4-5.

Fig 4-5 Phase angle display interface

3. Sequence component and unbalance analysis

Acuvim-L will do some sequential analysis for the input signal. It makes out the positive sequence, negative sequence and zero sequence of the fundamentals and does the unbalance analysis of voltage and current. They are shown in Fig 4-6.

Fig 4-6 Sequence component display interface

4.4 Extended I/O Module

Please refer to < User's manual of Extended I/O Modules>.

4.5 Extended Communication Block

Communication channel 1 is support the Modbus RTU protocol. Please refer to "Chapter 5 Communication" for Modbus RTU protocol.

Communication channel 2 is support for the Ethernet module, PROFIBUS module and second RS-485 module. There is not different between communication channel 1 and second RS-485 module. Please refer to <User's manual of Ethernet module> for Ethernet module and <User's manual of PRODIBUS module> for PRODIBUS module.

4.6 TOU Block

User can assign up to 4 different tariffs (sharp, peak, valley and normal) to
different time period within a day according to the billing requirements. The meter will calculate and accumulate energy to different tariffsaccording to the meter's internal clock timing and TOU settings.
TOU setting: User can set a maximum of 12 TOU seasons, each season can beassigned to a TOU schedule (a maximum of 14 TOU schedules are available). Eachschedule can be divided up into 14 segments (in which each segment can haveits own tariff).
User can customize the TOU calendar (including its tariffs, seasons, schedulesand segments) according to different applications. To make sure that the TOUcalendar is setup correctly, the meter will check the TOU settings according to the predefined rules (see below for "TOU setting format requirement" for details). TOU function will be disabled if the TOU calendar is set up incorrectly. If noerrors are found in the calendar and the TOU function is enabled, TOU energyaccumulation will begin.

TOU setting format requirement:

1. Season setting parameter: The calendar year will be divided up into different seasons depending on the season setting parameter. The parameter can beselected from any integer during 1 to 12 . User must enter the correct valuefor the season setting parameter in accordance to the TOU season table. If the season setting parameter is set as 2 , the first 2 slots of the TOU season table must be set, otherwise it will be considered as an invalid input (TOU function will bedisabled).
2. TOU season format: Enter the start date into the TOU season table slot following this format "MM-DD ID" - MM stands for the month, DD stands for the day and ID stands for the TOU schedule ID (available from 01 to 14). The dates should be organized so that they are in sequence according to the calendar year (the earlier date comes first and the later date comes last). For example, if 3 seasons are selected, the date parameters are January 1, June 6 and September 7, and TOU schedule $02,01,03$ will be used respectively, the first TOU season table
slot shall enter 01-01 02, the second slot shall enter 06-06 01, and the third slot shall enter 09-07 03. Entering 01-01 02 for the first slot, 09-07 03 for the second slot and 06-06 01 for the third slot is considered invalid.
3. Schedule setting parameter: The number of available TOU schedules depends on the schedule setting parameter. The parameter can be selected from any integer between 1 to 14 . This parameter determines the number of TOU schedules available for the TOU calendar setting. A maximum of 14 TOU schedules (from TOU Schedule \#1 to TOU Schedule \#14) can be used.
4. Segment setting parameter: Each TOU schedule consists of various timing segments. The number of segments depends on the segment setting parameter setup. The parameter can be selected from any integer during 1 to 14 (inclusively). User must enter the correct value for the segment setting parameter in accordance to the TOU schedule table. If the segment setting parameter is setas 3, the first 3 slots of the TOU schedule table must be set, otherwise, it will beconsidered as an invalid input (TOU function will be disabled).
5. TOU schedule format: Each TOU schedule represents a 24 hour cycle. Similarto TOU season format, enter the start time into the TOU schedule table slot following this format "HH:MM ID" - HH stands for hour (in 24 hr format), MM stands for minutes and ID stands for tariffs (available from 00 to 03). The time should be organized according to the hour sequence. For example, if 3 segments are selected, timing parameters are 01:00, 15:30, 22:45, the order of the 3 segments should be one of the following: 01:00, 15:30, 22:45 or 15:30, 22:45,01:00 or 22:45, 01:00, 15:30 Entering time information in a wrong sequence (forexample, entering 15:30, 01:00, 22:45) is considered as an invalid operation, TOUfunction will be disabled.
6. Tariff setting parameter: This parameter corresponds to the number of tariffsavailable for the TOU calendar and can be selected from any integer from 0 to 3 . The four tariffs: sharp, peak, valley and normal are represented by 4 integers: $0,1,2$ and 3 respectively. If the tariff setting parameter is set to 3 , all of the 4 tariffs will be available for the TOU calendar; if the parameter is set to 1 , only the first 2
tariffs (sharp and peak) will be available.
7. Holiday setting parameter: This parameter can be set from any integer between 1 and 30 , meaning a maximum of 30 holidays can be programmed to the TOU calendar. If the holiday setting parameter is set as 3 , the first 3 slots of the holiday schedule must be set, otherwise it will be considered as an invalid input (TOU function will be disabled).
8. Holiday schedule: The holiday schedule uses the same format as the TOU seasons "MM-DD ID". User can select which TOU schedule to be used for the holiday. The dates of the holiday schedule do not need to be organized ina sequential order (i.e. the first slot can be January 1, the second slot can be December 26 and the third slot can be December 25).
Note: User can either customize the TOU calendar factory settings or use the default factory settings. User can reset the TOU calendar to its default valuevia communication.

Daylight saving time(DST): under the circumstance that DST is enabled, if you choose the fixed date option, you set a fixed date for DST, the format is month/ day / hour / minute / adjust the time (in minute). If you choose the non-fixeddata option, you set a day in a week for DST, the format is month / which week/ day / hour /minute / adjust time (in minute). Once DST is enabled, DST will be automatically implemented by the chosen option.
When the clock runs to the start of DST, the meter will automatically adjust the clock for a settable time period in advance. When the clock runs to the end of DST, themeter will automatically adjust the clock back for a settable time period.

Fig 4-7 Daylight saving time setting interface
TOU Holidays function: Ten years holiday setting
In this setting, users can program holidays in the future decade. The format is month / day, holiday code.
When "Enable Holiday Years Settings" is checked, users can click "Make Holiday Settings (10 Year)" to enter the holiday table setup page. Once the setup is done, users can click "Generate", by which a holiday table for the next decade can begenerated.

\checkmark Enable Holidays Years Settings						
Start Year	2010	Ending Year	2019			
1st Year Holidays						
$1{ }^{\text {0 }}$ 01-0101	02-02 02	03-08 03	04-08 04	05-05 05	06-07 06	6
$7{ }^{7}$ 07-0707	08-08 08	09-12 09	10-1110	11-11 11	12-13 12	12
13 05-0702	00-00 00	00-00 00	00-00 00	00-00 00	00-00 00	18
19 00-0000	00-00 00	00-00 00	00-00 00	00-00 00	00-00 00	24
25 00-00 00	00-00 00	00-00 00	00-00 00	00-00 00	00-00 00	30
Settings Year	2010	Holiday Number	13			
2nd Year Holidays						
1 02-0202	03-07 03	04-07 04	05-05 05	06-06 06	08-08 08	6
7 09-1109	10-10 10	11-17 11	12-12 12	01-14 13	02-16 14	12
13 03-10 01	04-1702	05-16 03	06-16 04	07-06 05	08-29 06	18
19 09-30 07	10-15 08	04-10 02	03-17 06	05-09 02	07-0103	24
25 00-00 00	00-00 00	00-00 00	00-00 00	00-00 00	00-00 00	30
Settings Year	2011	Holiday Number	24			
-3rd Year Holidays						
1 02-0202	03-05 03	04-05 04	04-08 04	06-06 06	08-08 08	6
7 09-09 09	10-15 10	11-15 11	12-12 12	01-16 13	03-10 01	12
13 04-2202	05-2103	06-1404	07-06 05	08-28 06	10-15 08	18
19 01-1509	03-15 06	10-02 07	05-08 02	05-07 06	03-08 08	24
25 00-00 00	00-00 00	00-00 00	00-00 00	00-00 00	00-00 00	30
Settings Year	2012	Holiday Number	24			

Fig 4-8 Setting the interface Holidays
Weekend Schedule: Weekend Setting (bit0: Sunday; bit1 ~ bit6: Monday toSaturday; bit 0 means not effective, bit 1 means effective). For example, when the Weekend setting bit0 is 1 , it means Sunday is effective. When the Weekend setting bit1 is 1 , it means Monday is effective. For example, if a user wants to set

Saturday and Sunday effective, he should put 65 (1000001) into the Weekend setting field. When the meter clock is within the preset Weekend Schedule, the energy will accumulate under the tariff that corresponds to the Schedule.
Note: Holiday schedule has the highest priority among all the schedules followedby the Weekend Schedule. That is, when set appropriately, holiday and weekend schedules override normal (weekday) TOU settings. When a holiday falls in aweekend, the holiday schedule overrides the Weekend Schedule.

Record and Clear of Maximum Demand

Acuvim-EL could record the maximum power and current demand under different tariffs, when the TOU Function is enabled and the setting of time table is correct. It also can clear the value under different tariffs.
There are two ways of resetting Current Month TOU:

1. End of Month: This is the default method. All values from Current Month TOU will be copied over to Prior Month TOU at the very beginning of each month (the first day of each month at time 00:00:00). Current Month TOU will be cleared and reset to 0 .
2. Assign: User can select the time when should the values from Current Month TOU becopied over to Prior Month TOU. User can set the time in the following format"DD HH:MM:SS" - DD stands for day, HH stands for hour, MM stands for minute, SS stands for second. Similar to the previous method, once Current Month TOU istransferred to Prior Month TOU, all values from Current Month TOU will be clearedand reset to 0 .

4.7 Daily Energy

The meter store the current energy parameter at 00:00:00. The parameters of energy are stored including Ep_imp Ep_exp, Ep_total, Ep_net, Ep_q1, Ep_q2, Ep_ q3, Ep_q4, Eq_imp, Eq_exp, Eq_total, Eq_net, Eq_q1, Eq_q2, Eq_q3, Eq_q4, Es_ imp, Es_exp, Es_total, Es_net, Es_q1, Es_q2, Es_q3, Es_q4. Users can access the data of daily energy in recent 7 days.

The daily energy will be cleared when clearing the Energy or switching the Primary/Secondary Energy.

4.8 Power Quality Eventlog

DL and EL of Acuvim-L have the Power Quality Eventlog function.
Meter will record the time stamp, reasons when happen Voltage Sag, Voltage Fail, etc.

1. Power Quality Eventlog format:

Time stamp (4 word) + reason (1 word), 5 word for one eventlog.
Time stamp: W1, year - high byte, month - low byte; W2, day - high byte, hour low byte; W3, minute - high byte, second - low byte; W4, millisecond.
Reason: W5 - the reason of the eventlog (Bit0: SAG of V1, Bit1: SAG of V2, Bit2:
SAG of V3, Bit3: I1 over current, Bit4: I2 over current, Bit5: I3 over current, Bit6:V1 voltage fail, Bit7: V2 voltage fail, Bit8: V3 voltage fail, Bit9: Phase Sequence of Voltage, bit10: Phase Sequence of Current).
2. The number of Eventlog:

There are 16 of records of power quality event to be stored. When the records are full, the meter is not to respond to the new power quality enventlog until you clear the records.
3. The triggering reasons:

1) Voltage SAG

There is a phase voltage SAG eventlog record when one phase voltage is lower than the setting value (rated voltage * level threshold of voltage sag). The meter is not respond to the voltage sag again as long as one phase voltage sag, until the all phase voltage return to normal.
2) Voltage Fail

There is a phase voltage fail eventlog record when one phase voltage is lower than the setting value (rated voltage * level threshold of voltage fail). The meter is not respond to the voltage fail again as long as one phase voltage is failed,
until the all phase voltage return to normal.
3) Over Current

There is a phase over current eventlog record when one phase current is upper than the setting value (rated current * level threshold of overcurrent). The meter is not respond to the over current again as long as one phase current was over current, until the all phase current return to normal.
Note: the voltage sag and voltage fail share a common rated value. The voltage sag, voltage fail and over current share the common Half-cycle threshold.

Fig 4-9 Power Quality setting interface
Note: the function of power quality eventlog is available for 3 LN wiring. The meter which is Rope-CT type is not supports for the power quality eventlog.

4.9 Over-Range Alarming

In Acuvim-L, when the metering data is over the pre-setting limit and over presetting time interval, the over limit alarming will be picked up. The over limit value and time stamp will be recorded and the maximum number of records is 16. The digital output (DO/RO) can be used (if extended I/O Module is connected) as trigger to light or sound alarming.
In order to use the over-range alarming function, you should finish all the settings (equation or inequation or enable switches) correctly, or it will fail. All
the settings are to write their corresponding registers via communication as shown in Fig 4-10.

Fig 4-10 Alarm settings interface

Single alarming setting

Parameter code: Used to select a parameter for this group. For example:0frequency. Then this parameter will be monitored.
Comparison mode: set alarming condition (larger,smaller). For example: if we choose frequency, larger,and setting value is 50 , then it will alarm when the frequency is larger than 50 Hz .
Delay time: if the alarm condition lasts for a specified time period, an alarm will be valid and recorded. It ranges from 0 to 76500 ms (unit: 300 ms). For example, when it is set to 310 , there is delay 300 ms after the condition is setup. Output: If DO/RO is connected to the alarming, when alarm happens and DO/RO will close until all alarm output to DO/RO is reset.

Fig 4-11 DO output selection setting
Alarm backlight: Turn on this options, the backlight will blink when alarm happens.

Fig 4-12 IO interface settings
After single alarming setting is finished,you need to go on and finish the following global setting or the alarming won't work.
Table 4-1 indicates a group of alarming content, there are 16 groups in all with the same format.

Table 4-1 first group of alarming setting

Address	Parameter	Property	Range
3300 H	High byte: year	R	$0 \sim 99$
	Low byte: month		$1 \sim 12$

Address	Parameter	Property	Range
3301H	High byte: date	R	1~31
	Low byte: hour		$0 \sim 23$
3302H	High byte: minute	R	0 ~ 59
	Low byte: second		$0 \sim 59$
3303H	millisecond	R	0 ~ 999
3304H	High byte: alarming channel	R	0: channel 1; 1; channel 2
	Low byte: alarming status		0: reset; 1: alarm
3305H	Parameter code	R	1~51
3306H	Alarm value/ Reset value	R	Associated with the parameter code

"Alarming status"indicates information of current alarm status.
"Alarming channel"indicates the channel of theAlarming.
"Parameter code"indicates which parameter is recorded.
"Alarm value/ Reset value" indicates the recorded value when alarm happens and recovers.
"Time" indicates the time stamp with the accuracy of millimeter.
There are 16 of records of alarming event to be stored. But they are not corresponding to setting records, they are recorded in cycle. The latest event will cover the oldest one. It begins from the 1st record when the power is turned on. When over range parameters return to normal, the time stamp and value will be recorded as well. So user can work out the duration of over range by checking the changing time.

Acuview 3.4 .8 -- Accuenergy Corporation - [Acuvim-EL (COM17,1)]								
\square Operation Settings Iools Window Help								
Readings Settings	Readings > Alarm Log							
Real-Time Metering Digital I/O Energy Real-Time Current Month TOU Prior Month TOU Maximum Demand Harmonics THD Voltage Spectrum Current Spectrum Sequence Component Phase Angles Max and Min SOE Log Alarm Log PQ Event Log ${ }^{\text {D }}$ Device Information	No.	Time Stamp	ms	Alarm Channel	Value	Status	Limit ID	
	1	2001-01-0100:48:19	395	Reverse Phase Se...	126.5°	In	1	
	2	2001-01-01 00:48:25	907	Reverse Phase Se...	$0.0{ }^{\circ}$	Out	1	
	3	2001-01-01 00:55:18	379	Reverse Phase Se...	$111.9{ }^{\circ}$	In	1	
	4	2001-01-01 00:55:19	506	Reverse Phase Se...	$137.9{ }^{\circ}$	Out	1	
	5	2001-01-01 00:55:31	512	Reverse Phase Se...	$124.3{ }^{\circ}$	In	1	
	6	2001-01-0100:55:33	381	Reverse Phase Se...	149.0°	Out	1	
	7	2001-01-0100:01:28	377	Reverse Phase Se...	0.0°	Out	1	
	8	2001-01-0100:02:37	467	Reverse Phase Se...	$119.9{ }^{\circ}$	In	1	
	9	2001-01-01 00:03:07	481	Reverse Phase Se...	0.0°	Out	1	
	10	2001-01-01 00:03:18	886	Reverse Phase Se...	0.0°	Out	1	
	11	2001-01-0100:03:19	488	Reverse Phase Se...	$119.9{ }^{\circ}$	In	1	
	12	2001-01-01 00:48:00	397	Reverse Phase Se...	$151.6{ }^{\circ}$	Out	1	
		2001-01-01 00:48:06	399	Reverse Phase Se...	$109.6{ }^{\circ}$	In	1	
	14	2001-01-0100:48:09	400	Reverse Phase Se...	170.4°	Out	1	
		20n1-n1-nt nn. 48.10	ann	Daverre Dhare Co	11100	in	1	
		est Alarm Record No.	11			ar Log		Save

Fig 4-13 Alarm log display page

4.10 Seal

There is a different between seal meter and ordinary meter on the front panel. The seal meter has a physically seal key on the front panel. Users can physically seal the meter similar to autility meter in order to provide anti-tampering protection. All metrological programming and user defined parameters are protected with a physicalseal.Users can browse all protected by seal, but can't set this parameter.
There are two addresses about the seal function: 100 FH and 22C1H. 100FH address: Non-Standard Seal Options of Seals.
22 C 1 H address: the Seals Status. The Seals Status is "open" when the physically seal key is opened or the front panel does not has the physically seal key. The Seals Status is "sealed" when the physically seal key is closed.
The content of anti-tampering protection is as follow.

1. System parameter setting

Table 4-2 System Parameter Setting

Address	Parameter	Display and Key	Communication
1004 H	Voltage Input Wiring Type	$\sqrt{ }$	$\sqrt{ }$
1005 H	Current Input Wiring Type	$\sqrt{ }$	$\sqrt{ }$
1006 H	PT1 (High 16 bit)	$\sqrt{ }$	$\sqrt{ }$
1007 H	PT1 (Low 16 bit)	$\sqrt{ }$	$\sqrt{ }$
1008 H	PT2	$\sqrt{ }$	$\sqrt{ }$
1009 H	CT1	$\sqrt{ }$	$\sqrt{ }$
100 AH	CT2	$\sqrt{ }$	$\sqrt{ }$
100 BH	CTN1	$\sqrt{ }$	$\sqrt{ }$
100 CH	CTN2	$\sqrt{ }$	$\sqrt{ }$
100 DH	Definition of Middle line current	$\sqrt{ }$	$\sqrt{ }$
100 EH	Definition of ractive power	$\sqrt{ }$	$\sqrt{ }$
100 FH	Nonstandard Options of The Lead	$\sqrt{ }$	$\sqrt{ }$
1010 H	Current I1 direction	$\sqrt{ }$	$\sqrt{ }$
1011 H	Current I2 direction	$\sqrt{ }$	$\sqrt{ }$
1012 H	Current I3 direction	$\sqrt{ }$	$\sqrt{ }$
1013 H	Energy Calculating Mode	$\sqrt{ }$	$\sqrt{ }$
1014 H	Demand Calculating Mode	$\sqrt{ }$	$\sqrt{ }$
1015 H	Averaging Interval Window	$\sqrt{ }$	$\sqrt{ }$
1016 H	Sub-Interval	$\sqrt{ }$	$\sqrt{ }$
1017 H	VAR/PF Convention	$\sqrt{ }$	$\sqrt{ }$
1018 H	Demand Clear	$\sqrt{ }$	
1019 H	Energy Calculating Mode		
101 AH	Energy Clear		

Note: "-" means that the meter doesn't have this function, " $\sqrt{ }$ " means that this parameter will be protected when the seal key is closed.
2. Energy

Table 4-3 Energy Settings

Address	Parameter	Communication
2080H ~ 2081H	Ep_imp	\checkmark
2082H ~ 2083H	Ep_exp	\checkmark
2084H $\sim 2085 \mathrm{H}$	Ep_total	\checkmark
2086H ~ 2087H	Ep_net	\checkmark
2088H ~ 2089H	Ep_q1	\checkmark
208AH ~ 208BH	Ep_q2	\checkmark
208CH ~ 208DH	Ep_q3	\checkmark
208EH ~ 208FH	Ep_q4	\checkmark
2090H ~ 2091H	Eq_imp	\checkmark
2092H ~ 2093H	Eq_exp	\checkmark
2094H ~ 2095H	Eq_total	\checkmark
2096H ~ 2097H	Eq_net	\checkmark
2098H ~ 2099H	Eq_q1	\checkmark
209AH ~ 209BH	Eq_q2	\checkmark
209CH ~ 209DH	Eq_q3	\checkmark
209EH ~ 209FH	Eq_q4	\checkmark
20A0H ~ 20A1H	Es_imp	\checkmark
20A2H ~ 20A3H	ES_exp	\checkmark
20A4H ~ 20A5H	Es_total	\checkmark
20A6H ~ 20A7H	Es_net	\checkmark
20A8H ~ 20A9H	Es_q1	\checkmark
20AAH ~ 20ABH	Es_q2	\checkmark
20ACH ~ 20ADH	Es_q3	\checkmark
20AEH ~ 20AFH	Es_q4	\checkmark
20B0H ~ 20B1H	Ep_imp of Phase A	\checkmark
20B2H ~ 20B3H	Ep_exp of Phase A	\checkmark
20B4H ~ 20B5H	Ep_imp of Phase B	\checkmark
20B6H ~ 20B7H	Ep_exp of Phase B	\checkmark
20B8H ~ 20B9H	Ep_imp of Phase C	\checkmark
20BAH ~ 20BBH	Ep_exp of Phase C	\checkmark
20BCH ~ 20BDH	Eq_imp of Phase A	\checkmark

Address	Parameter	Communication
20BEH ~ 20BFH	Eq_exp of Phase A	\checkmark
$20 \mathrm{COH} \sim 20 \mathrm{C} 1 \mathrm{H}$	Eq_imp of Phase B	\checkmark
$20 \mathrm{C} 2 \mathrm{H} \sim 20 \mathrm{C} 3 \mathrm{H}$	Eq_exp of Phase B	\checkmark
$20 \mathrm{C} 4 \mathrm{H} \sim 20 \mathrm{C} 5 \mathrm{H}$	Eq_imp of Phase C	\checkmark
$20 \mathrm{C} 6 \mathrm{H} \sim 20 \mathrm{C} 7 \mathrm{H}$	Eq_exp of Phase C	\checkmark
$20 \mathrm{C} 8 \mathrm{H} \sim 20 \mathrm{C} 9 \mathrm{H}$	Es_imp of Phase A	\checkmark
20CAH ~ 20CBH	Es_exp of Phase A	\checkmark
20CCH ~ 20CDH	Es_imp of Phase B	\checkmark
$20 \mathrm{CEH} \sim 20 \mathrm{CFH}$	Es_exp of Phase B	\checkmark
20D0H ~ 20D1H	Es_imp of Phase C	\checkmark
20D2H ~ 20D3H	Es_exp of Phase C	\checkmark

3. DI

Table 4-4 DI Settings

Address	Parameter	Display and Key	Communication
1900 H	DI Type	\checkmark	\checkmark
1901 H	DI Pulse Constant	\checkmark	\checkmark
1902 H	Clear DI Counters	\checkmark	\checkmark
1903 H	Work Mode of Do1	\checkmark	\checkmark
1904 H	Work Mode of Do2	\checkmark	\checkmark
1905 H	Pulse Constant	\checkmark	\checkmark
1906 H	Do Pulse Width	\checkmark	\checkmark
1907 H	Do1 Energy Output	\checkmark	\checkmark
1908 H	Do2 Energy Output	\checkmark	\checkmark

4. Non-Standard Seal Options of Seals:

1) Communication channel 1, when the bit0 of Non-Standard Seal Options of Seals is valid, protected the content about the communication channel 1 as follow.

Address	Parameter	Display and Key	Communication
1000 H	Access code	\checkmark	\checkmark
1001 H	Communication Address	\checkmark	\checkmark
1002 H	Baud Rate	\checkmark	\checkmark
1003 H	Parity Mode	\checkmark	\checkmark

2) Communication channel 2 ,when the bit 1 of Non-Standard Seal Options of Seals is valid, protected the content about the communication channel 2 as follow.

Address	Parameter	Display and Key	Communication
1024H	Communication Address of Channel 2	\checkmark	\checkmark
1025H	Baud Rate of Channel 2	\checkmark	$\sqrt{ }$
1026H	Parity Mode of Channel 2	\checkmark	\checkmark
Ethernet Module			
$1 \mathrm{C03H}$	DHCP	\checkmark	\checkmark
1C04H	IP Address First Byte (High)	\checkmark	\checkmark
1C05H	IP Address Second Byte (Low)	\checkmark	\checkmark
1C06H	IP Address Third Byte (High)	\checkmark	\checkmark
1C07H	IP Address Fourth Byte (Low)	\checkmark	\checkmark
1C08H	Subnet Mask First Byte (High)	$\sqrt{ }$	\checkmark
$1 \mathrm{CO9H}$	Subnet Mask Second Byte (Low)	\checkmark	\checkmark
1COAH	Subnet Mask Third Byte (High)	\checkmark	\checkmark
1COBH	Subnet Mask Fourth Byte (Low)	\checkmark	\checkmark
1COCH	Default Gateway First Byte (High)	\checkmark	\checkmark
1CODH	Default Gateway Second Byte (Low)	\checkmark	\checkmark
1COEH	Default Gateway Third Byte (High)	\checkmark	\checkmark
1COFH	Default Gateway Fourth Byte (Low)	\checkmark	\checkmark

3) Device Run-Time, when the bit2 of Non-Standard Seal Options of Seals is valid, protected the content about the device run-time as follow.

Address	Parameter	Display and Key	Communication
101CH	Reset Total Run Time	\checkmark	\checkmark
101DH	Reset Load Time Clear		\checkmark
101EH	Reset Run Time		\checkmark
Ethernet Module			
2280H	Year	-	\checkmark
2281H	Month	-	\checkmark
2282H	Day	-	$\sqrt{ }$
2283 H	Hour	-	$\sqrt{ }$
2284H	Minute	-	\checkmark
2285H	Second	-	\checkmark
2286H	Week	-	\checkmark

Note: there is only one operation for three options (reset total run time, reset load time and reset run time) by display and key.
4) DI Counters, when the bit3 of Non-Standard Seal Options of Seals is valid, protected the content about the DI Counters as follow.

Address	Parameter	Display and Key	Communication
1902 H	Clear DI Counters	$\sqrt{ }$	$\sqrt{ }$

5) TOU Related, when the bit4 of Non-Standard Seal Options of Seals is valid, protected the content about the TOU as follow.

Address	Parameter	Display and Key	Communication
101 FH	Enable Holiday Yeas Setting	-	\checkmark
1020 H	Sharp Demand Clear	\checkmark	\checkmark
1021 H	Peak Demand Clear	\checkmark	\checkmark
1022 H	Valley Demand Clear	\checkmark	\checkmark
1023 H	Normal Demand Clear	\checkmark	$\sqrt{ }$
1024 H	Total Demand Clear	\checkmark	$\sqrt{ }$

Chapter 5 Communication

5.1 Modbus Protocol Introduction

5.2 Communication Format
5.3 Data Address Table

This chapter will mainly discuss how to operate the meter via communication port using software. To master this chapter, you should be familiar with Modbus and read other chapters of this manual to make sure that you have a good understanding of the functions and applications of this product.
This chapter includes: Modbus protocol, format of communication and data address table and Acuvim-L application details.

5.1 Modbus Protocol Introduction

Modbus TM RTU protocol is used for communication in Acuvim-L series meter. Data format and error check methods are defined in Modbus protocol. The halfduplex query and respond mode is adopted in Modbus protocol. There is only one master device in the communication net. The others are slave devices,waiting for the query of the master.

1. Transmission mode

The mode of transmission defines the data structure within a frame and the rules used to transmit data. The mode is defined in the following which is compatible with Modbus RTU Mode*.

* Modbus is trademark of Modicon, Inc.

Coding system	8-bit binary
Start bit	1
Data bits	8
Parity	NON1/NON2/ODD/EVEN
Stop bit	1 or 2
Error checking	CRC check

2. Modbus Protocol

A Modbus message is placed by the transmitting device into a frame than has a known beginning and ending point. This allows receiving devices to begin at the start of the message, read the address portion and determine which device is addressed, and to know when the message is completed. Partial messages can be detected and errors can be set as a result.
2.1 Framing

Table 5-1 data frame format

Address	Function	Data	Check
8-bit	8-bit	$\mathrm{N} \times 8$-bit	16-bit

2.2 Address field

The address field of a message frame contains eight bits. Valid slave deviceaddresses are in the range of $0 \sim 247$ decimal. A master addresses a slave byplacing the slave address in the address field of the message. When the slave sends its response, it places its own address in this address field of the response to let the master know which slave is responding.

2.3 Function field

The function code field of a message frame contains eight bits. Valid codes are in the range of 1~255 decimal. When a message is sent from a master to a slave device the function code field tells the slave what kind of action to perform.

Table 5-2 Function Code

Code	Meaning	Action
01	Read Relay Output Status	Obtain current status of Relay Output
02	Read Digital Input(DI) Status	Obtain current status of Digital Input
03	Read data	Obtain current binary value from one or more registers
05	Write Relay Output	Control the Relay
16	Preset multiple-registers	Place specific value into a series of consecutive multiple-registers

2.4 Data field

The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. The data field of messages sent from a master to slave devices contains additional information which the slave must use to take the action defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled, and the count of actualdata bytes in the field. For example, if the master requests a slave to read agroup of holding registers (function code 03), the data field specifies the starting register and how many registers are to be read. If the master writes to a group ofregisters in the slave (function code 10 hexadecimal), the data field specifies the starting register, how many registers to write, the count of data bytes to follow inthe data field, and the data to be written into the registers.
If no error occurs, the data field of a response from a slave to a master contains the data requested. If an error occurs, the field contains an exception code that the master application can use to determine the next action to be taken. The data field can be nonexistent (of zero length) in certain kinds of messages.

2.5 Error Check Field

Every message includes an error checking field which is based on the Cyclical Redundancy Check (CRC) method. The CRC field checks the contents of the entire message. It is applied regardless of any parity check method used for the individual characters of the message. The CRC field is two bytes long, containing a 16-bit binary value. The CRC value is calculated by the transmitting device, and is appended to the message.

2.6 Error Checking

The receiving device recalculates the CRC value during reception of the message, and compares the calculated value to the actual value it received in the CRC field. An error will be reported if the two values are not equal. CRC calculation is first started by preloading the whole 16 -bit register to 1 's. The process begins by applying successive 8 -bit bytes of the message to the current contents of the
register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits, and the parity bit, do not apply to the CRC.
When generating the CRC, each 8-bit character is exclusive ORed with theregister contents. The result is shifted towards the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined, if the LSB equals to 1 , the register is exclusive ORed with a preset, fixed value; if the LSB equals to 0 , no action will be taken. This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next 8 -bitbyte is exclusive ORed with the register's current value, and the process repeatsfor eight more shifts as described above. After all the bytes of the message have been applied, the final contents of the register, which should exchange thehigh-byte and the low-byte, is the CRC value. When the CRC is appended to themessage, the low-order byte is appended first, followed by the high-order byte. A procedure for generating a CRC is:

1) Load a 16-bit register with FFFF hex (all 1's). Call this the CRC register.
2) Exclusive OR the first 8-bit byte of the message with the low-order byteof the 16 -bit CRC register, putting the result in the CRCregister.
3) Shift the CRC register one bit to the right (toward the LSB), zero-filling the MSB. Extract and examine the LSB.
4) (If the LSB was 0): Repeat Step 3 (another shift).
(If the LSB was 1): Exclusive OR the CRC register with the polynomial value A001 hex (1010 000000000001).
5) Repeat Steps 3 and 4 until 8 shifts have been performed. When this is done, a complete 8 -bit byte will have been processed.
6) Repeat Steps 2 through 5 for the next 8-bit byte of the message.Continue doing this until all bytes have been processed.
7) The final contents of the CRC register is the CRC value.
8) When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.

5.2 Communication Format

Explanation of frame
Table 5-3 Explanation of a frame

Addr	Fun	Data start reg hi	Data start reg lo	Data \#of regs hi	Data \#of regs lo	CRC16 hi	CRC16 lo
06 H	03 H	00 H	00 H	00 H	21 H	84 H	65 H

As shown in table 4-3 the meaning of each abbreviated word is:
Addr: Address of slave device
Fun: Function code
Data start reg HI: Start register address high byte
Data start reg LO: Start register address low byte
Data \#of reg HI: Number of register high byte
Data \#of reg LO: Number of register low byte
CRC16 HI: CRC high byte
CRC16 LO: CRC low byte

1. Read Status of Relay (Function Code 01)

This function code is used to read the statues in Acuvim-L. $1=0 n, 0=0 f f$; There are 2 Relays in Acuvim-L. The Address of each Relay is Relay $1=0000$ Hand Relay $2=0001 \mathrm{H}$. The following query is to read Relay Status of Acuvim-L.

Query
Table 5-4 Read the status of Relay1 and Relay2 Query Message

Addr	Fun	Relay start reg hi	Relay start reg lo	Relay \# of reg hi	Relay \# of reg lo	CRC16 Hi	CRC16 lo
11 H	01 H	00 H	00 H	00 H	02 H	BFH	5 BH

Response

The Acuvim-L response includes the Acuvim-L address, function code, quantity of data byte, the data, and error checking. An example response to readthe status of Relay 1 and Relay2 is shown as Table 5-5.The status of Relay 1 and Relay 2 are responding to the last 2 bits of the data.

Table 5-5 Relay status Response

Addr	Fun	Byte count	Data	CRC16 Hi	CRC16 Lo
11 H	01 H	01 H	02 H	BFH	$5 B H$

The content of the data is:

7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 0 MSB (Relay $1=$ OFF , Relay 2=ON) LSB

2. Read the status of $\mathrm{DI}($ Function 02)

Function Code 02, $1=$ On 0=Off.
DI1's address is 0×0000, DI2's address is 0×0001, and so on.The following query is to read the Status of 4 DIs of Acuvim-L with theaddress of 17.

Query:
Table 5-6 Read 4DIs Query Message

Addr	Fun	DI start addr hi	DI start addr lo	DI num hi	DI num lo	CRC16 Hi	CRC16 Lo
11 H	02 H	00 H	00 H	00 H	04 H	7 BH	59 H

Response:

The Acuvim-L response includes the Acuvim-L address, function code,quantity of data characters, the data characters, and error checking. An exampleresponse to
read the status of 4 DIs are shown as Table 5-7 The status of 4 DIs are responding to the last 4 bits of the data.

Table 5-7 Read Status of DI

Addr	Fun	Byte count	Data	CRC16 Hi	CRC16 Lo
11 H	01 H	01 H	03 H	E5H	49 H

The content of the data is:

7	6	5	4	3	2	1	0
0	0	0	0	0	0	1	1

MSB
DI1: bit0; DI2: bit1; DI3: bit2; DI4: bit3.

3. Read Data (Function Code 03)

This function allows the master to obtain the measurement results of Acuvim-L. There is an example to read the 3 measured data ($F, \mathrm{U} 1$ and U 2) from slave device number 17 , the data address of F is $0130 \mathrm{H} ; \mathrm{U} 1$ is 0131 H , and V 2 is 0132 H .

Query:
Table 5-8 Read F, U1, U2 Query Message

Addr	Fun	Data start addr hi	Data start Addr lo	Data \#of Regs hi	Data \#of Regs lo	CRC16 hi	CRC16 lo
11 H	03 H	01 H	30 H	00 H	03 H	06 H	A 8 H

Response:
The Acuvim-L series meter response includes the address code, function code, quantity of data byte, data, and error checking. An example response to read F,V1 and V2 $(\mathrm{F}=1388 \mathrm{H}(50.00 \mathrm{~Hz}), \mathrm{V} 1=03 \mathrm{E} 7 \mathrm{H}(99.9 \mathrm{~V}), \mathrm{V} 2=03 \mathrm{E} 9 \mathrm{H}(100.1 \mathrm{~V})$ is shown as Table 5-9.

Table 5-9 Read F, V1 and V2 Message of response

Addr	Fun	Byte count	Data1 hi	Data1 lo	Data 2 hi	Data2 lo	Data3 hi	Data3 lo	CRC16 hi	CRC16 lo
11 H	03 H	06 H	13 H	88 H	03 H	E7H	03 H	E 9 H	7 FH	04 H

4.Write Relay Output

Function 05 allows the user to control the Relay. The example below is a request to an Acuvim-L seriesmeter with closing the RO1.

Query:
Table 5-10 Write DO Query Message

Addr	Fun	Data start reg hi	Data start reg lo	Data \#of reg hi	Data \#of reg lo	CRC16 hi	CRC16 lo
11 H	05 H	00 H	00 H	FFH	00 H	8 EH	AAH

Response:
Table 5-11 Write DO Message of response

Addr	Fun	Data start reg hi	Data start reg lo	Data \#of reg hi	Data \#of reg lo	CRC16 hi	CRC16 lo
11 H	05 H	00 H	00 H	FFH	00 H	8 EH	AAH

5. Preset / Reset Multi-Register (Function Code 16)

Function 16 allows the user to modify the contents of a multi-register. Any register that exists within the Acuvim-L series meter can have its contentschanged by this message. The example below is a request to an Acuvim-L seriesmeter with the address of 17 to Preset Ep_imp = (17807783.3KWH), while its HEXvalue is 0A9D4089H. Ep_imp data address is 0156 H and 0157 H .

Query:

Table 5-12 Preset KWH Query Message

Addr	Fun	Data start reg HI	Data start reg LO	Data \#of reg HI	Data \#of reg LO	Byte Count
11 H	10 H	01 H	56 H	00 H	02 H	04 H

Value HI	Value LO	Value HI	Value IO	CRC 16 HI	CRC 16 LO
0 AH	9 DH	40 H	89 H	$4 D \mathrm{H}$	B 9 H

Response:
The normal response to a preset multi-register request includes the Acuvim-L series meter address, function code, data start register, the number of registers, and error checking.

Table 5-13 Preset KWH Query Message of response

Addr	Fun	Data start reg hi	Data start reg lo	Data \#of reg hi	Data \#of Reg lo	CRC16 hi	CRC16 lo
11 H	10 H	01 H	0 CH	00 H	02 H	A 2 H	B 4 H

5.3 Data Address Table

Basic measurements
The data address of basis measurements includes primary data address and secondary data address. Function code: 03 read.

Table 5-14 Secondary data address of basic measurement

Address	Parameter	Range	Data type	Type of access
2000 H	Frequency F	$4500 \sim 6500$	Word	R
2001 H	A Phase voltage V1	$0 \sim 65535$	Word	R
2002 H	B Phase voltage V2	$0 \sim 65535$	Word	R
2003 H	C Phase voltage V3	$0 \sim 65535$	Word	R

Address	Parameter	Range	Data type	Type of access
2004H	$\mathrm{U}_{\text {inavg }}$	0~65535	Word	R
2005H	Line voltage V12	0~65535	Word	R
2006H	Line voltage V23	0~65535	Word	R
2007H	Line voltage V31	0~65535	Word	R
2008 H	$\mathrm{U}_{\text {llavg }}$	0~65535	Word	R
2009H	current I1	0~65535	Word	R
200 AH	current 12	0~65535	Word	R
200BH	current 13	0~65535	Word	R
200 CH	Reserved	0~65535	Word	R
200DH	Neutral line current In	0~65535	Word	R
200EH	$\mathrm{I}_{\text {total }}$	0~65535	Word	R
200FH	$\mathrm{l}_{\text {avg }}$	0~65535	Word	R
2010 H	A Phase active power Pa	-32768~32767	Word	R
2011H	B Phase active power Pb	-32768~32767	Word	R
2012 H	C Phase active power Pc	-32768~32767	Word	R
2013H	System active power Pcon	-32768~32767	Word	R
2014H	A Phase reactive power Qa	-32768~32767	Word	R
2015H	B Phase reactive power Qb	-32768~32767	Word	R
2016 H	C Phase reactive power Qc	-32768~32767	Word	R
2017H	System reactive power Qcon	-32768~32767	Word	R
2018H	A Phase apparent power Sa	0~65535	Word	R
2019H	B Phase apparent power Sb	0~65535	Word	R
201AH	C Phase apparent power Sc	0~65535	Word	R
201BH	System apparent power Scon	0~65535	Word	R
201 CH	A Phase power factor PFa	-1000~1000	Word	R
201DH	B Phase power factor PFb	-1000~1000	Word	R
201 EH	C Phase power factor PFc	-1000~1000	Word	R
201 FH	System power factor PFcon	-1000~1000	Word	R
2020 H	Voltage unbalance factor U_unbl	0~1000	Word	R
2021 H	Current unbalance factor I_unbl	0~1000	Word	R
2022 H	Load nature RT (L/C/R)	76/67/82	Word	R

Address	Parameter	Range	Data type	Type of access
2023H	Active power demand P_DEMA	$-32768 \sim 32767$	Word	R
2024H	Reactive power demand Q_DEMA	$-32768 \sim 32767$	Word	R
2025H	Apparent power demand S_DEMA	$0 \sim 65535$	Word	R
2026H	A Phase current demand la_DEMA	$0 \sim 65535$	Word	R
2027H	B Phase current demand Ib_DEMA	$0 \sim 65535$	Word	R
2028H	C Phase current demand Ic_DEMA	$0 \sim 65535$	Word	R
2029H	Neutral line Current demand IN_DEMA	$0 \sim 65535$	Word	R
202AH	Active Power Forecasting Demand P_DEMA	$-32768 \sim 32767$	Word	R
202BH	Reactive Power Forecasting Demand Q_DEMA	$-32768 \sim 32767$	Word	R
202CH	Apparent Power Forecasting Demand S_DEMA	$0 \sim 65535$	Word	R
202DH	A Phase current forecast demand la_DEMA	$0 \sim 65535$	Word	R
202EH	B Phase current forecast demand Ib_DEMA	$0 \sim 65535$	Word	R
202FH	C Phase current forecast demand Ic_DEMA	$0 \sim 65535$	Word	R
2030H	Neutral line current forecast demand IN_DEMA	$0 \sim 65535$	Word	R
2031H- 207FH	reserved		Word	R

The relationship between numerical value in register of the Acuvim-L series meter and the real physicalvalue is shown in the following table. (Rx is numerical value in register of the Acuvim-L series meter)

Table 5-15 Conversion relationship of basic measurements

Parameter	Relationship	Unit
Voltage $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 12, \mathrm{~V} 23, \mathrm{~V} 31$	$\mathrm{U}=\mathrm{Rx} \times(\mathrm{PT} 1 / \mathrm{PT} 2) / 10$	$\mathrm{Volt}(\mathrm{V})$
Current $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{In}(\mathrm{Calculated)}$	$\mathrm{I}=\mathrm{Rx} \times(\mathrm{CT} 1 / \mathrm{CT} 2) / 1000$	$\mathrm{Amp}(\mathrm{A})$
$\operatorname{In}($ Measured $)$	$\mathrm{I}=\mathrm{Rx} \times(\mathrm{CTN} 1 / \mathrm{CTN} 2) / 1000$	$\mathrm{Amp}(\mathrm{A})$
Power Pa, $\mathrm{Pb}, \mathrm{Pc}, \mathrm{Psum}$	$\mathrm{P}=\mathrm{Rx} \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / \mathrm{CT} 2)$	$\mathrm{Watt}(\mathrm{W})$
Reactive power Qa, Qb, Qc, Qsum	$\mathrm{Q}=\mathrm{Rx} \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / \mathrm{CT} 2)$	var
Apparent power Sa,Sb,Sc,Ssum	$\mathrm{S}=\mathrm{Rx} \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / \mathrm{CT} 2)$	VA
Power factor PFa, PFb, PFc, PFsum	$\mathrm{PF}=\mathrm{Rx} / 1000$	NA
Frequency	$\mathrm{F}=\mathrm{Rx} / 100$	Hz
Load nature $(\mathrm{R} / \mathrm{L} / \mathrm{C})$	$67 / 76 / 82$	NA

Parameter	Relationship	Unit
Voltage or current unbalance factor U_unbl, I_unbl	Unbl $=(\mathrm{Rx} / 1000) \times 100 \%$	NA

Note: If the value of CT2 is 333, as the CT2 as 1 for the numeration.
Table 5-16 Primary data address of basic measurements

Address	Parameter	Data type	Type of access
2180H-2181H	Frequency F	Float	R
$2182 \mathrm{H}-2183 \mathrm{H}$	A Phase voltage V1	Float	R
$2184 \mathrm{H}-2185 \mathrm{H}$	B Phase voltage V2	Float	R
$2186 \mathrm{H}-2187 \mathrm{H}$	C Phase voltage V3	Float	R
$2188 \mathrm{H}-2189 \mathrm{H}$	$\mathrm{U}_{\text {inavg }}$	Float	R
218AH-218BH	Line voltage V12	Float	R
218CH-218DH	Line voltage V23	Float	R
218EH-218FH	Line voltage V31	Float	R
$2190 \mathrm{H}-2191 \mathrm{H}$	$\mathrm{U}_{\text {lavg }}$	Float	R
2192H-2193H	current I1	Float	R
$2194 \mathrm{H}-2195 \mathrm{H}$	current 12	Float	R
2196H-2197H	current l3	Float	R
2198H-2199H	Reversed	Float	R
219AH-219BH	Neutral line current	Float	R
219CH-219DH	$\mathrm{I}_{\text {total }}$	Float	R
219EH-219FH	$\mathrm{l}_{\text {avg }}$	Float	R
21A0H-21A1H	A Phase active power Pa	Float	R
21A2H-21A3H	B Phase active power Pb	Float	R
21A4H-21A5H	C Phase active power PC	Float	R
21A6H-21A7H	System active power Pcon	Float	R
21A8H-21A9H	A Phase reactive power Qa	Float	R
21AAH-21ABH	B Phase reactive power Qb	Float	R
21ACH-21ADH	C Phase reactive power Qc	Float	R
21AEH-21AFH	System reactive power Qcon	Float	R
21B0H-21B1H	A Phase apparent power Sa	Float	R
21B2H-21B3H	B Phase apparent power Sb	Float	R

Address	Parameter	Data type	Type of access
21B4H-21B5H	C Phase apparent power Sc	Float	R
21B6H-21B7H	System apparent power Scon	Float	R
21B8H-21B9H	A Phase power factor PFa	Float	R
21BAH-21BBH	B Phase power factor PFb	Float	R
21BCH-21BDH	C Phase power factor PFc	Float	R
21BEH-21BFH	System power factor PFcon	Float	R
$21 \mathrm{COH}-21 \mathrm{C} 1 \mathrm{H}$	Voltage unbalance factor U_unbl	Float	R
21-2H-21C3H	Current unbalance factor I_unbl	Float	R
$21 \mathrm{C} 4 \mathrm{H}-21 \mathrm{C} 5 \mathrm{H}$	Load nature RT (L/C/R)	Float	R
21-6H-21C7H	Active power demand P_DEMA	Float	R
$21 \mathrm{C} 8 \mathrm{H}-21 \mathrm{C} 9 \mathrm{H}$	Reactive power demand Q_DEMA	Float	R
21CAH-21CBH	Apparent power demand S_DEMA	Float	R
21CCH-21CDH	A Phase current demand la_DEMA	Float	R
21CEH-21CFH	B Phase current demand Ib_DEMA	Float	R
21D0H-21D1H	C Phase current demand Ic_DEMA	Float	R
21D2H-21D3H	Neutral line current demand IN_DEMA	Float	R
21D4H-21D5H	Active Power Forecasting Demand P_DEMA	Float	R
21D6H-21D7H	Reactive Power Forecasting Demand Q_DEMA	Float	R
21D8H-21D9H	Apparent Power Forecasting Demand S_DEMA	Float	R
21DAH-21DBH	A Phase current forecast demand la_DEMA	Float	R
21DCH-21DDH	B Phase current forecast demand lb_DEMA	Float	R
21DEH-21DFH	C Phase current forecast demand Ic_DEMA	Float	R
21EOH-21E1H	Neutral line current forecast demand IN_DEMA	Float	R

Power quality parameters area
The parameters in the region is related to power quality data, using the Modbus protocol function 03 code reader. Energy parameter address table, see Table 5-17.

Table 5-17 Data table of Power quality measurements

Address	Parameter	Data Range	Data type	Type of access
23 COH	THD_V1 of V1(or V12)	$0 \sim 32768$	word	R

Address	Parameter	Data Range	Data type	Type of access
23C1H	THD_V2 of V2(or V31)	0~32768	word	R
23 C 2 H	THD_V3 of V3(or V23)	0~32768	word	R
23 C 3 H	THD_V (THD Voltage Average)	0~32768	word	R
23C4H	THD I1 of I1	0~32768	word	R
23C5H	THD I1 of I2	0~32768	word	R
23 C 6 H	THD I1 of I3	0~32768	word	R
23 C 7 H	THD I1 of IN	0~32768	word	R
23 C 8 H	THD_I(THD Current Average)	0~32768	word	R
23 C 9 H	Odd THD of V1(or V12)	0~32768	word	R
23 CAH	Even THD of V1(or V12)	0~32768	word	R
23CBH	THFF of V1 (or V12)	0~65535	word	R
23 CCH	Crest Factor of V1(or V12)	0~32768	word	R
23CDH	Odd THD of V2(or V23)	0~32768	word	R
23CEH	Even THD of V2(or V23)	0~32768	word	R
23CFH	THFF of V2(or V23)	0~65535	word	R
23DOH	Crest Factor of V2(or V23)	0~32768	word	R
23D1H	Odd THD of V3(or V31)	0~32768	word	R
23D2H	Even THD of V3(or V31)	0~32768	word	R
23D3H	THFF of V3(or V31)	0~65535	word	R
23D4H	Crest Factor of V1(or V12)	0~32768	word	R
23D5H	Odd THD of I1	0~32768	word	R
23D6H	Even THD of I1	0~32768	word	R
23D7H	K Factor of I1	0~65535	word	R
23D8H	Odd THD of I2	0~32768	word	R
23D9H	Even THD of I2	0~32768	word	R
23DAH	K Factor of 12	0~65535	word	R
23DBH	Odd THD of I3	0~32768	word	R
23DCH	Even THD of I3	0~32768	word	R
23DDH	K Factor of I3	0~65535	word	R
23DEH	Odd THD of IN	0~32768	word	R
23DFH	Even THD of IN	0~32768	word	R
23EOH	K Factor of IN	0~65535	word	R

Address	Parameter	Data Range	Data type	Type of access
$23 \mathrm{E} 1 \mathrm{H}-241 \mathrm{EH}$	Harmonic Spectrum of V1 $\left(2^{\text {nd }} \sim 63^{\text {st }}\right)$	$0 \sim 32768$	word	R
$241 \mathrm{FH}-245 \mathrm{CH}$	Harmonic Spectrum of V2 $\left(2^{\text {nd }} \sim 63^{\text {st }}\right)$	$0 \sim 32768$	word	R
$245 \mathrm{D}-249 \mathrm{AH}$	Harmonic Spectrum of V3 $\left(2^{\text {nd }} \sim 63^{\text {st }}\right)$	$0 \sim 32768$	word	R
$249 \mathrm{BH}-24 \mathrm{D} 8 \mathrm{H}$	Harmonic Spectrum of I1 $\left(2^{\text {nd }} \sim 63^{\text {st }}\right)$	$0 \sim 32768$	word	R
$24 \mathrm{D9H}-2516 \mathrm{H}$	Harmonic Spectrum of I2 $\left(2^{\text {nd }} \sim 63^{\text {st }}\right)$	$0 \sim 32768$	word	R
$2517 \mathrm{H}-2554 \mathrm{H}$	Harmonic Spectrum of I3 $\left(2^{\text {nd }} \sim 63^{\text {st }}\right)$	$0 \sim 32768$	word	R
$2555 \mathrm{H}-2592 \mathrm{H}$	Harmonic Spectrum of IN $\left(2^{\text {nd }} \sim 63^{\text {st }}\right)$	$0 \sim 32768$	word	R

The relationship between numerical value in register of Acuvim-L and the real physical value is as following table. (Rx is numerical value in register of Acuvim-L)

Table 5-18 Conversion relationship of Power quality measurements

Parameter	Relationship	Unit
THD	THD $=\mathrm{Rx} / 10000 \times 100 \%$	NA
Harmonic content	THDn $=\mathrm{Rx} / 10000 \times 100 \%$	NA

Statistics measurements

Function code: 03 read

Table 5-19 data address of Statistics measurements

Address	Parameter	Data Range	Data type	Type of access
Max, 03H read				
3000 H	Time Stamp - Year (Max of V1)	00~99	word	R
	Time Stamp - Month (Max of V1)	1~12		R
3001H	Time Stamp - Day (Max of V1)	1~31	word	R
	Time Stamp - Hours (Max of V1)	0~23		R
3002H	Time Stamp - Minute (Max of V1)	0~59	word	R
	Time Stamp - Second (Max of V1)	0~59		R
3003H	Max of V1	-32768~32767	word	R
$3004 \mathrm{H}-3007 \mathrm{H}$	Time Stamp and Max of V2	-32768~32767	word	R

Address	Parameter	Data Range	Data type	Type of access
$3008 \mathrm{H}-300 \mathrm{BH}$	Time Stamp and Max of V3	-32768~32767	word	R
$300 \mathrm{CH}-300 \mathrm{FH}$	Time Stamp and Max of V12	-32768~32767	word	R
$3010 \mathrm{H}-3013 \mathrm{H}$	Time Stamp and Max of V23	-32768~32767	word	R
$3014 \mathrm{H}-3017 \mathrm{H}$	Time Stamp and Max of V31	-32768~32767	word	R
$3018 \mathrm{H}-301 \mathrm{BH}$	Time Stamp and Max of I1	-32768~32767	word	R
$301 \mathrm{CH}-301 \mathrm{FH}$	Time Stamp and Max of I2	-32768~32767	word	R
$3020 \mathrm{H}-3023 \mathrm{H}$	Time Stamp and Max of I3	-32768~32767	word	R
$3024 \mathrm{H}-3027 \mathrm{H}$	Time Stamp and Max of IN	-32768~32767	word	R
$3028 \mathrm{H}-302 \mathrm{BH}$	Time Stamp and Max of System Power	-32768~32767	word	R
$302 \mathrm{CH}-302 \mathrm{FH}$	Time Stamp and Max of System Reactive Power	-32768~32767	word	R
$3030 \mathrm{H}-3033 \mathrm{H}$	Time Stamp and Max of System Apparent Power	-32768~32767	word	R
$3034 \mathrm{H}-3037 \mathrm{H}$	Time Stamp and Max of System Power Factor	-32768~32767	word	R
$3038 \mathrm{H}-303 \mathrm{BH}$	Time Stamp and Max of System Frequency	-32768~32767	word	R
$303 \mathrm{CH}-303 \mathrm{FH}$	Time Stamp and Max of Unbalance Voltage	-32768~32767	word	R
$3040 \mathrm{H}-3043 \mathrm{H}$	Time Stamp and Max of Unbalance Current	-32768~32767	word	R
$3044 \mathrm{H}-3047 \mathrm{H}$	Time Stamp and Max of THD V1	-32768~32767	word	R
$3048 \mathrm{H}-304 \mathrm{BH}$	Time Stamp and Max of THD V2	-32768~32767	word	R
$304 \mathrm{CH}-304 \mathrm{FH}$	Time Stamp and Max of THD V3	-32768~32767	word	R
$3050 \mathrm{H}-3053 \mathrm{H}$	Time Stamp and Max of THD I1	-32768~32767	word	R
$3054 \mathrm{H}-3057 \mathrm{H}$	Time Stamp and Max of THD I2	-32768~32767	word	R
$3058 \mathrm{H}-305 \mathrm{BH}$	Time Stamp and Max of THD I3	-32768~32767	word	R
$305 \mathrm{CH}-305 \mathrm{FH}$	Time Stamp and Max of THD IN	-32768~32767	word	R
$3060 \mathrm{H}-3063 \mathrm{H}$	Time Stamp and Max of Power demand	-32768~32767	word	R
$3064 \mathrm{H}-3067 \mathrm{H}$	Time Stamp and Max of Reactive Power demand	-32768~32767	word	R
$3068 \mathrm{H}-306 \mathrm{BH}$	Time Stamp and Max of Apparent Power demand	-32768~32767	word	R
$306 \mathrm{CH}-306 \mathrm{FH}$	Time Stamp and Max of I1 Demand	-32768~32767	word	R
$3070 \mathrm{H}-3073 \mathrm{H}$	Time Stamp and Max of I2 Demand	-32768~32767	word	R
$3074 \mathrm{H}-3077 \mathrm{H}$	Time Stamp and Max of I3 Demand	-32768~32767	word	R
3078H-307B	Time Stamp and Max of IN Demand	-32768~32767	word	R
Min, 03 H read				
$307 \mathrm{CH}-307 \mathrm{FH}$	Time Stamp and Min of V1	-32768~32767	word	R
$3080 \mathrm{H}-3083 \mathrm{H}$	Time Stamp and Min of V2	-32768~32767	word	R

Address	Parameter	Data Range	Data type	Type of access
3084H-3087H	Time Stamp and Min of V3	$-32768 \sim 32767$	word	R
3088H-308BH	Time Stamp and Min of V12	$-32768 \sim 32767$	word	R
308CH-308FH	Time Stamp and Min of V23	$-32768 \sim 32767$	word	R
3090H-3093H	Time Stamp and Min of V31	$-32768 \sim 32767$	word	R
3094H-3097H	Time Stamp and Min of I1	$-32768 \sim 32767$	word	R
3098H-309BH	Time Stamp and Min of I2	$-32768 \sim 32767$	word	R
309CH-309FH	Time Stamp and Min of I3	$-32768 \sim 32767$	word	R
30A0H-30A3H	Time Stamp and Min of IN	$-32768 \sim 32767$	word	R
30A4H-30A7H	Time Stamp and Min of System Power	$-32768 \sim 32767$	word	R
30A8H-30ABH	Time Stamp and Min of System Reactive Power	$-32768 \sim 32767$	word	R
30ACH-30AFH	Time Stamp and Min of System Apparent Power	$-32768 \sim 32767$	word	R
30B0H-30B3H	Time Stamp and Min of System Power Factor	$-32768 \sim 32767$	word	R
30B4H-30B7H	Time Stamp and Min of System Frequency	$-32768 \sim 32767$	word	R
30B8H-30BBH	Time Stamp and Min of Unbalance Voltage	$-32768 \sim 32767$	word	R
30BCH-30BFH	Time Stamp and Min of Unbalance Current	$-32768 \sim 32767$	word	R
30C0H-30C3H	Time Stamp and Min of THD V1	$-32768 \sim 32767$	word	R
30C4H-30C7H	Time Stamp and Min of THD V2	$-32768 \sim 32767$	word	R
30C8H-30CB	Time Stamp and Min of THD V3	$-32768 \sim 32767$	word	R
30CCH-30CFH	Time Stamp and Min of THD I1	$-32768 \sim 32767$	word	R
30D0-30D3H	Time Stamp and Min of THD I2	$-32768 \sim 32767$	word	R
30D4H-30D7H	Time Stamp and Min of THD I3	$-32768 \sim 32767$	word	R
30D8H-30DBH	Time Stamp and Min of THD IN	$-32768 \sim 32767$	word	R

This address space is stored meter run time and load run-time parameters, as shown in the table.

Table 5-20 Run time parameter address

Clock parameters, 03H read				
180 H	Meter run time (high 16 bit)	999999999	Dword	R
181 H	Meter run time (low 16 bit)		R	
182 H	Load run time (high 16 bit)	$0 \sim 999999999$		
183 H	Load run time (low 16 bit)			

The table below is the conversion relationship for run time.
Table 5-21 Conversion relationship of run time

Parameter	Relationship	Unit
Meter run time	Run_Hur $=\mathrm{Rx} / 100$	H
Load run time	Run_LoadHur $=\mathrm{Rx} / 100$	H

Parameter setting

Function code: 03 read; 16 preset
Table 5-22 Data address of setting parameter

Address	Parameter	Data Range	Data type	Type of access
03H read; 10H write				
1000H	Access code	0~9999	R/W	word
1001H	Communication Address	1~247	R/W	word
1002H	Baud Rate	1200~38400, 57600	R/W	word
1003H	Parity Mode	0: EVEN; 1: ODD; 2: NONE2; 3: NONE1.	R/W	Word
1004H	Voltage Input Wiring Type	0:3Ln; 1:3LL; 2: 2LL; 3: 1Ln; 4: 1LL;	R/W	word
1005H	Current Input Wiring Type	0:3CT; 1: 2CT; 2: 1CT	R/W	word
1006H	PT1 (High 16 bit)	500~10000000	R/W	Word
1007H	PT1 (Low 16 bit)		R/W	Word
1008H	PT2	500~4000	R/W	Word
1009H	CT1	1~50000	R/W	Word
100AH	CT2	"1A, 5A, 333mV, 100mV, (80, 100, 200)mA, 6.68 mA 1) It can be modified When the CT mode is $5 / 1 \mathrm{~A}$; 2) It can be switched among 80,100 and 200 when the CT mode is 200 mA ; 3)It is not allowed to modifie when the CT mode is others Types"	R/W	Word
100BH	CTN1	1~50000	R/W	Word

Address	Parameter	Data Range	Data type	Type of access
100CH	CTN2	"1A, 5A, 333mV, 100mV, (80, 100, 200)mA, 6.68 mA 1) It can be modified When the CT mode is $5 / 1 \mathrm{~A}$; 2) It can be switched among 80,100 and 200 when the CT mode is 200 mA ; 3) It is not allowed to modifie when the CT mode is others Types"	R/W	Word
100DH	Definition of Middle line current	0: Calculated; 1: Measured	R/W	Word
100EH	Definition of ractive power	0- sinusoida; 1: nonsinusoida	R/W	Word
100FH	Nonstandard Options of The Lead	"Bit0: The Parameters of The First Way Communication; Bit1:The Parameters of The second Way Communication; Bit2:The Parameters of Clear Run Time Contents; Bit3:DI counter number; Bit4:The Contents of TOU; 1: bit-appropriate availably; 0: bit-appropriate invalid"	R/W	Word
1010H	Current I1 direction	0:Positive; 1:Negative	R/W	Word
1011H	Current 12 direction	$0:$ Positive; 1:Negative	R/W	Word
1012H	Current I3 direction	0:Positive; 1:Negative	R/W	Word
1013H	Energy Calculating Mode	0:Primary; 1: Secondary	R/W	Word
1014H	Demand Calculating Mode	0:Sliding Window Demand; 1:Fixed Window Demand; 2:Rolling Window Demand; 3:Thermal Demand	R/W	Word
1015H	Averaging Interval Window	1~30min	R/W	Word
1016H	Sub-Interval	1~30min	R/W	Word
1017H	VAR/PF Convention	0: IEC; 1: IEEE	R/W	Word
1018H	Demand Clear	Only 0AH Work	R/W	Word
1019H	Energy Calculating Mode	0: Disable; 1:Enable	R/W	Word

Address	Parameter	Data Range	Data type	Type of access
101AH	Energy Clear	Only 0AH Work	R/W	Word
101BH	Reset Total Run Time	Only OAH Work	R/W	Word
101CH	Reset Load Time Clear	Only OAH Work	R/W	Word
101DH	Reset Run Time	Only OAH Work	R/W	Word
101EH	Enable Holiday Yeas Setting	0: Disable; 1:Enable	R/W	Word
101FH	Sharp Demand Clear	Only OAH Work	R/W	Word
1020H	Peak Demand Clear	Only OAH Work	R/W	Word
1021H	Valley Demand Clear	Only OAH Work	R/W	Word
1022H	Normal Demand Clear	Only OAH Work	R/W	Word
1023H	Total Demand Clear	Only OAH Work	R/W	Word
1024H	Reset Max and Min	Only OAH Work	R/W	Word
1025H	Turn On the Backlight	0~120(min)	R/W	Word
1026H	Reverse	0: Modbus-RTU; 1: Profibus	R/W	Word
1027H	Communication Address of Channel 2	1-247(MODBUS); 0~126: Profibus;	R/W	Word
1028H	Baud Rate of Channel 2	1200-38400(DL\EL), 57600	R/W	Word
1029H	Parity Mode of Channel 2	0: EVEN ;1: ODD; 2: NONE2; 3: NONE1.	R/W	Word
102AH	Enable Wiring Check	Only 0AH Work	R/W	Word
102BH	Expected Power Factor	Capacitive: 67; Inductive: 76; Resistive: 82;	R/W	Word
102CH	Expected Load Type	-1000~1000	R/W	Integer
102DH	Reverse		R/W	Word

Parameter of clock
Function code:03 read,16:preset
Table 5-23 Data address of clock parameter

Address	Parameter	Data Range	Data type	Type of access
03H read, 10 H write				
2280 H	Year	$2000-2099$	R/W	Word

Address	Parameter	Data Range	Data type	Type of access
2281H	Month	1-12	R/W	Word
2282 H	Day	1-31	R/W	Word
2283H	Hour	0-23	R/W	Word
2284H	Minute	0-59	R/W	Word
2285H	Second	0-59	R/W	Word
2286H	Week	0-6	R/W	Word
2287H	ToTal Run Time (High)	0~999999999	R	Dword
2288 H	ToTal Run Time (Low)			
2289 H	Load Run Time (High)	0~999999999	R	Dword
228AH	Load Run Time (Low)			
228BH	Run Time (High)	0~999999999	R	Dword
228 CH	Run Time (Low)			
228DH-22BFH	Reverse		R	Word

Energy measurements

The data address of energy measurements includes real time energy and TOU energy, the relationship between the real time energy and TOU energy as the following:

Fig 5-1 Division plans of energy address

Data address of real time energy and single-phase energy, function: 03 read; 16 preset.

Table 5-24 data address of real time energy

Address	Parameter	Data Range	Data type	Type of access
Real-time energy, 3H read, 10H write				
$2080 \mathrm{H}-2081 \mathrm{H}$	Energy IMP Ep_imp	0~999999999	R/W	Dword
$2082 \mathrm{H}-2083 \mathrm{H}$	Energy EXP Ep_exp	0~999999999	R/W	Dword
$2084 \mathrm{H}-2085 \mathrm{H}$	Energy Total Ep_total	0~999999999	R/W	Dword
$2086 \mathrm{H}-2087 \mathrm{H}$	Energy Net Ep_net	$\begin{aligned} & \hline-999999999 ~ \\ & 999999999 \end{aligned}$	R/W	Dword
$2088 \mathrm{H}-2089 \mathrm{H}$	First Quartile Energy Ep_q1	0~999999999	R/W	Dword
208AH-208BH	Second Quartile Energy Ep_q2	0~999999999	R/W	Dword
208C-208DH	Third Quartile Energy Ep_q3	0~999999999	R/W	Dword
208EH-208FH	Fourth Quartile Energy Ep_q4	0~999999999	R/W	Dword
$2090 \mathrm{H}-2091 \mathrm{H}$	Inductive Reactive Energy Eq_imp	0~999999999	R/W	Dword
$2092 \mathrm{H}-2093 \mathrm{H}$	Capacitive Reactive Energy Eq_exp	0~999999999	R/W	Dword
$2094 \mathrm{H}-2095 \mathrm{H}$	Reactive Energy Total Eq_total	0~999999999	R/W	Dword
2096H-2097H	Reactive Energy Net Eq_net	$\begin{aligned} & \text {-999999999~ } \\ & 999999999 \end{aligned}$	R/W	Dword
2098H-2099H	First Quartile Reactive Energy Eq_q1	0~999999999	R/W	Dword
209AH-209BH	Second Quartile Reactive Energy Eq_q2	0~999999999	R/W	Dword
209CH-209DH	Third Quartile Reactive Energy Eq_q3	0~999999999	R/W	Dword
209EH-209FH	Fourth Quartile Reactive Energy Eq_q4	0~999999999	R/W	Dword
20A0H-20A1H	Apparent Energy IMP Es_imp	0~999999999	R/W	Dword
20A2H-20A3H	Apparent Energy EXP ES_exp	0~999999999	R/W	Dword
20A4H-20A5H	Apparent Energy Total Es_total	0~999999999	R/W	Dword
20A6H-20A7H	Apparent Energy Net Es_net	$\begin{aligned} & \hline-999999999 ~ \\ & 999999999 \end{aligned}$	R/W	Dword
20A8H-20A9H	First Quartile Apparent Energy Es_q1	0~999999999	R/W	Dword
20AAH-20ABH	Second Quartile Apparent Energy Es_q2	0~999999999	R/W	Dword
20ACH-20ADH	Third Quartile Apparent Energy Es_q3	0~999999999	R/W	Dword
20AEH-20AFH	Fourth Quartile Apparent Energy Es_q4	0~999999999	R/W	Dword

Address	Parameter	Data Range	Data type	Type of access
Real-time single-phase energy, 3H read, 10H write				
20B0H-20B1H	Phase A Energy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20B2H-20B3H	Phase A Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword
20B4H-20B5H	Phase B Energy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20B6H-20B7H	Phase B Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword
20B8H-20B9H	Phase C Energy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20BAH-20BBH	Phase C Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword
20BCH-20BDH	Phase A Reactive Energy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20BEH-20BFH	Phase A Reactive Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword
20COH-20C1H	Phase B ReactiveEnergy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20C2H-20C3H	Phase B Reactive Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword
20C4H-20C5H	Phase C Reactive Energy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20C6H-20C7H	Phase C Reactive Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword
20C8H-20C9H	Phase A Apparent Energy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20CAH-20CBH	Phase A Apparent Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword
20CCH-20CDH	Phase B Apparent Energy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20CEH-20CFH	Phase B Apparent Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword
20D0H-20D1H	Phase C Apparent Energy IMP Ep_imp	$0 \sim 999999999$	R/W	Dword
20D2H-20D3H	Phase C Apparent Energy EXP Ep_exp	$0 \sim 999999999$	R/W	Dword

Table 5-25 Conversion of energy parameter

Parameter	Relationship	Unit
Power energy Ep_imp,Ep_exp(Primary)	$\mathrm{Ep}=\mathrm{Rx} / 10$	Kwh
Power energy Ep_imp,Ep_exp(Secondary side)	$\mathrm{Ep}=\mathrm{Rx} / 1000$	Kwh
Reactive energy Eq_imp,Eq_exp(Primary)	$\mathrm{Eq}=\mathrm{Rx} / 10$	Kvarh
Reactive energy Eq_imp,Eq_exp(Secondary side)	$\mathrm{Eq}=\mathrm{Rx} / 1000$	Kvarh
Apparent energy Es(Primary)	$\mathrm{Es}=\mathrm{Rx} / 10$	Kvah
Apparent energy Es(Secondary side)	$\mathrm{Es}=\mathrm{Rx} / 1000$	Kvah

Data address of TOU energy

The data address save the parameter of energy, which includes Data address of last month TOU energy, Data address of current month TOU energy, Data address
of TOU parameter setting and Data address of TOU default parameter. Except for the data address of TOU default parameter, the data address could be read with 03 code, preset with 16 code.

Fig 5-2 Division plan of TOU energy
Table 5-26 Data address of prior and current month

Address	Parameter	Data Range	Data type	Type of access
Current montn (Accumulated)(High Byte in Most, Low Byte in last)				
$3500 \mathrm{H}-3501 \mathrm{H}$	Import Energy Ep_imp(Sharp) Import Energy Ep_imp(Peak) Import Energy Ep_imp(Valley) Import Energy Ep_imp(Normal) Import Energy Ep_imp(Total)	0~999999999	Dword	R/W
$3502 \mathrm{H}-3503 \mathrm{H}$		0~999999999	Dword	R/W
$3504 \mathrm{H}-3505 \mathrm{H}$		0~999999999	Dword	R/W
$3506 \mathrm{H}-3507 \mathrm{H}$		0~999999999	Dword	R/W
$3508 \mathrm{H}-3509 \mathrm{H}$		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
350AH-350BH	Export Energy Ep_exp(Sharp) Export Energy Ep_exp(Peak) Export Energy Ep_exp(Valley) Export Energy Ep_exp(Normal) Export Energy Ep_exp(Total)	0~999999999	Dword	R/W
350CH-350DH		0~999999999	Dword	R/W
350EH-350FH		0~999999999	Dword	R/W
$3510 \mathrm{H}-3511 \mathrm{H}$		0~999999999	Dword	R/W
$3512 \mathrm{H}-3513 \mathrm{H}$		0~999999999	Dword	R/W
$3514 \mathrm{H}-3515 \mathrm{H}$	Ep_total(Sharp) Ep_total(Peak) Ep_total(Valley) Ep_total(Normal) Ep_total(Total)	0~999999999	Dword	R/W
$3516 \mathrm{H}-3517 \mathrm{H}$		0~999999999	Dword	R/W
$3518 \mathrm{H}-3519 \mathrm{H}$		0~999999999	Dword	R/W
351AH-351BH		0~999999999	Dword	R/W
351CH-351DH		0~999999999	Dword	R/W
$351 \mathrm{EH}-351 \mathrm{FH}$	Ep_net(Sharp) Ep_net(Peak) Ep_net(Valley) Ep_net(Normal) Ep_net(Total)	-999999999~999999999	Dword	R/W
$3520 \mathrm{H}-3521 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3522 \mathrm{H}-3523 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3524 \mathrm{H}-3525 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3526 \mathrm{H}-3527 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3528 \mathrm{H}-3529 \mathrm{H}$	Ep_q1(Sharp) Ep_q1(Peak) Ep_q1(Valley) Ep_q1(Normal) Ep_q1(Total)	0~999999999	Dword	R/W
352AH-352BH		0~999999999	Dword	R/W
352CH-352DH		0~999999999	Dword	R/W
$352 \mathrm{EH}-352 \mathrm{FH}$		0~999999999	Dword	R/W
$3530 \mathrm{H}-3531 \mathrm{H}$		0~999999999	Dword	R/W
$3532 \mathrm{H}-3533 \mathrm{H}$	Ep_q2(Sharp) Ep_q2(Peak) Ep_q2(Valley) Ep_q2(Normal) Ep_q2(Total)	0~999999999	Dword	R/W
$3534 \mathrm{H}-3535 \mathrm{H}$		0~999999999	Dword	R/W
$3536 \mathrm{H}-3537 \mathrm{H}$		0~999999999	Dword	R/W
$3538 \mathrm{H}-3539 \mathrm{H}$		0~999999999	Dword	R/W
353AH-353BH		0~999999999	Dword	R/W
353CH-353DH	Ep_q3(Sharp) Ep_q3(Peak) Ep_q3(Valley) Ep_q3(Normal) Ep_q3(Total)	0~999999999	Dword	R/W
$353 \mathrm{EH}-353 \mathrm{FH}$		0~999999999	Dword	R/W
$3540 \mathrm{H}-3541 \mathrm{H}$		0~999999999	Dword	R/W
$3542 \mathrm{H}-3543 \mathrm{H}$		0~999999999	Dword	R/W
$3544 \mathrm{H}-3545 \mathrm{H}$		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
$3546 \mathrm{H}-3547 \mathrm{H}$	Ep_q4(Sharp) Ep_q4(Peak) Ep_q4(Valley) Ep_q4(Normal) Ep_q4(Total)	0~999999999	Dword	R/W
$3548 \mathrm{H}-3549 \mathrm{H}$		0~999999999	Dword	R/W
354AH-354BH		0~999999999	Dword	R/W
354CH-354DH		0~999999999	Dword	R/W
354EH-354FH		0~999999999	Dword	R/W
$3550 \mathrm{H}-3551 \mathrm{H}$	Inductive Reactive Energy(Sharp) Inductive Reactive Energy(Peak) Inductive Reactive Energy(Valley) Inductive Reactive Energy(Normal) Inductive Reactive Energy(Total)	0~999999999	Dword	R/W
$3552 \mathrm{H}-3553 \mathrm{H}$		0~999999999	Dword	R/W
$3554 \mathrm{H}-3555 \mathrm{H}$		0~999999999	Dword	R/W
$3556 \mathrm{H}-3557 \mathrm{H}$		0~999999999	Dword	R/W
$3558 \mathrm{H}-3559 \mathrm{H}$		0~999999999	Dword	R/W
355AH-355BH	Capacitive Reactive Energy (Sharp) Capacitive Reactive Energy (Peak) Capacitive Reactive Energy (Valley) Capacitive Reactive Energy (Normal) Capacitive Reactive Energy (Total)	0~999999999	Dword	R/W
355CH-355DH		0~999999999	Dword	R/W
$355 \mathrm{EH}-355 \mathrm{FH}$		0~999999999	Dword	R/W
$3560 \mathrm{H}-3561 \mathrm{H}$		0~999999999	Dword	R/W
$3562 \mathrm{H}-3563 \mathrm{H}$		0~999999999	Dword	R/W
$3564 \mathrm{H}-3565 \mathrm{H}$	Eq_total(Sharp) Eq_total(Peak) Eq_total(Valley) Eq_total(Normal) Eq_total(Total)	0~999999999	Dword	R/W
$3566 \mathrm{H}-3567 \mathrm{H}$		0~999999999	Dword	R/W
$3568 \mathrm{H}-3569 \mathrm{H}$		0~999999999	Dword	R/W
356AH-356BH		0~999999999	Dword	R/W
356CH-356DH		0~999999999	Dword	R/W
356EH-356FH	Eq_net(Sharp) Eq_net(Peak) Eq_net(Valley) Eq_net(Normal) Eq_net(Total)	-999999999~999999999	Dword	R/W
$3570 \mathrm{H}-3571 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3572 \mathrm{H}-3573 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3574 \mathrm{H}-3575 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3576 \mathrm{H}-3577 \mathrm{H}$		-999999999~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
3578H-3579H	Eq_q1(Sharp) Eq_q1(Peak) Eq_q1(Valley) Eq_q1(Normal) Eq_q1(Total)	0~999999999	Dword	R/W
357AH-357BH		0~999999999	Dword	R/W
357CH-357DH		0~999999999	Dword	R/W
357EH-357FH		0~999999999	Dword	R/W
$3580 \mathrm{H}-3581 \mathrm{H}$		0~999999999	Dword	R/W
$3582 \mathrm{H}-3583 \mathrm{H}$	Eq_q2(Sharp) Eq_q2(Peak) Eq_q2(Valley) Eq_q2(Normal) Eq_q2(Total)	0~999999999	Dword	R/W
$3584 \mathrm{H}-3585 \mathrm{H}$		0~999999999	Dword	R/W
$3586 \mathrm{H}-3587 \mathrm{H}$		0~999999999	Dword	R/W
$3588 \mathrm{H}-3589 \mathrm{H}$		0~999999999	Dword	R/W
358AH-358BH		0~999999999	Dword	R/W
$358 \mathrm{CH}-358 \mathrm{DH}$	Eq_q3(Sharp) Eq_q3(Peak) Eq_q3(Valley) Eq_q3(Normal) Eq_q3(Total)	0~999999999	Dword	R/W
358EH-358FH		0~999999999	Dword	R/W
$3590 \mathrm{H}-3591 \mathrm{H}$		0~999999999	Dword	R/W
$3592 \mathrm{H}-3593 \mathrm{H}$		0~999999999	Dword	R/W
$3594 \mathrm{H}-3595 \mathrm{H}$		0~999999999	Dword	R/W
$3596 \mathrm{H}-3597 \mathrm{H}$	Eq_q4(Sharp) Eq_q4(Peak) Eq_q4(Valley) Eq_q4(Normal) Eq_q4(Total)	0~999999999	Dword	R/W
$3598 \mathrm{H}-3599 \mathrm{H}$		0~999999999	Dword	R/W
359AH-359BH		0~999999999	Dword	R/W
$359 \mathrm{CH}-359 \mathrm{DH}$		0~999999999	Dword	R/W
359EH-359FH		0~999999999	Dword	R/W
35A0H-35A1H	Es_imp(Sharp) Es_imp(Peak) Es_imp(Valley) Es_imp(Normal) Es_imp(Total)	0~999999999	Dword	R/W
35A2H-35A3H		0~999999999	Dword	R/W
35A4H-35A5H		0~999999999	Dword	R/W
$35 \mathrm{~A} 6 \mathrm{H}-35 \mathrm{~A} 7 \mathrm{H}$		0~999999999	Dword	R/W
$35 \mathrm{~A} 8 \mathrm{H}-35 \mathrm{~A} 9 \mathrm{H}$		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
35AAH-35ABH	Es_exp(Sharp) Es_exp(Peak) Es_exp(Valley) Es_exp(Normal) Es_exp(Total)	0~999999999	Dword	R/W
35ACH-35ADH		0~999999999	Dword	R/W
35AEH-35AFH		0~999999999	Dword	R/W
35B0H-35B1H		0~999999999	Dword	R/W
35B2H-35B3H		0~999999999	Dword	R/W
35B4H-35B5H	Es_total(Sharp) Es_total(Peak) Es_total(Valley) Es_total(Normal) Es_total(Total)	0~999999999	Dword	R/W
35B6H-35B7H		0~999999999	Dword	R/W
$35 \mathrm{B8H}-35 \mathrm{B9H}$		0~999999999	Dword	R/W
35BAH-35BBH		0~999999999	Dword	R/W
35BCH-35BDH		0~999999999	Dword	R/W
35BEH-35BFH	Es_net(Sharp) Es_net(Peak) Es_net(Valley) Es_net(Normal) Es_net(Total)	-999999999~999999999	Dword	R/W
$35 \mathrm{COH}-35 \mathrm{C} 1 \mathrm{H}$		-999999999~999999999	Dword	R/W
$35 \mathrm{C} 2 \mathrm{H}-35 \mathrm{C} 3 \mathrm{H}$		-999999999~999999999	Dword	R/W
$35 \mathrm{C} 4 \mathrm{H}-35 \mathrm{C} 5 \mathrm{H}$		-999999999~999999999	Dword	R/W
$35 \mathrm{C} 6 \mathrm{H}-35 \mathrm{C} 7 \mathrm{H}$		-999999999~999999999	Dword	R/W
$35 \mathrm{C} 8 \mathrm{H}-35 \mathrm{C} 9 \mathrm{H}$	Es_q1(Sharp) Es_q1(Peak) Es_q1(Valley) Es_q1(Normal) Es_q1(Total)	0~999999999	Dword	R/W
35CAH-35CBH		0~999999999	Dword	R/W
35CCH-35CDH		0~999999999	Dword	R/W
35CEH-35CFH		0~999999999	Dword	R/W
35D0H-35D1H		0~999999999	Dword	R/W
35D2H-35D3H	Es_q2(Sharp) Es_q2(Peak) Es_q2(Valley) Es_q2(Normal) Es_q2(Total)	0~999999999	Dword	R/W
35D4H-35D5H		0~999999999	Dword	R/W
35D6H-35D7H		0~999999999	Dword	R/W
35D8H-35D9H		0~999999999	Dword	R/W
35DAH-35DBH		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
35DCH-35DDH	Es_q3(Sharp) Es_q3(Peak) Es_q3(Valley) Es_q3(Normal) Es_q3(Total)	0~999999999	Dword	R/W
35DEH-35DFH		0~999999999	Dword	R/W
$35 \mathrm{EOH}-35 \mathrm{E} 1 \mathrm{H}$		0~999999999	Dword	R/W
$35 \mathrm{E} 2 \mathrm{H}-35 \mathrm{E} 3 \mathrm{H}$		0~999999999	Dword	R/W
$35 \mathrm{E} 4 \mathrm{H}-35 \mathrm{E} 5 \mathrm{H}$		0~999999999	Dword	R/W
35E6H-35E7H	Es_q4(Sharp) Es_q4(Peak) Es_q4(Valley) Es_q4(Normal) Es_q4(Total)	0~999999999	Dword	R/W
$35 \mathrm{E} 8 \mathrm{H}-35 \mathrm{E} 9 \mathrm{H}$		0~999999999	Dword	R/W
35EAH-35EBH		0~999999999	Dword	R/W
35ECH-35EDH		0~999999999	Dword	R/W
35EEH-35EFH		0~999999999	Dword	R/W
Prior Month(Accumulated)(High Byte in Most, Low Byte in last)				
$35 \mathrm{~F} 0 \mathrm{H}-35 \mathrm{~F} 1 \mathrm{H}$	Import Energy Ep_imp(Sharp) Import Energy Ep_imp(Peak) Import Energy Ep_imp(Valley) Import Energy Ep_imp(Normal) Import Energy Ep_imp(Total)	0~999999999	Dword	R/W
35F2H-35F3H		0~999999999	Dword	R/W
$35 \mathrm{~F} 4 \mathrm{H}-35 \mathrm{~F} 5 \mathrm{H}$		0~999999999	Dword	R/W
$35 \mathrm{~F} 6 \mathrm{H}-35 \mathrm{~F} 7 \mathrm{H}$		0~999999999	Dword	R/W
$35 \mathrm{~F} 8 \mathrm{H}-35 \mathrm{F9H}$		0~999999999	Dword	R/W
35FAH-35FBH	Export Energy Ep_exp(Sharp) Export Energy Ep_exp(Peak) Export Energy Ep_exp(Valley) Export Energy Ep_exp(Normal) Export Energy Ep_exp(Total)	0~999999999	Dword	R/W
35FCH-35FDH		0~999999999	Dword	R/W
35FEH-35FFH		0~999999999	Dword	R/W
$3600 \mathrm{H}-3501 \mathrm{H}$		0~999999999	Dword	R/W
$3602 \mathrm{H}-3603 \mathrm{H}$		0~999999999	Dword	R/W
$3604 \mathrm{H}-3605 \mathrm{H}$	Ep_total(Sharp) Ep_total(Peak) Ep_total(Valley) Ep_total(Normal) Ep_total(Total)	0~999999999	Dword	R/W
$3606 \mathrm{H}-3607 \mathrm{H}$		0~999999999	Dword	R/W
$3608 \mathrm{H}-3609 \mathrm{H}$		0~999999999	Dword	R/W
360AH-360BH		0~999999999	Dword	R/W
360CH-360DH		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
360EH-360FH	Ep_net(Sharp) Ep_net(Peak) Ep_net(Valley) Ep_net(Normal) Ep_net(Total)	-999999999~999999999	Dword	R/W
$3610 \mathrm{H}-3611 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3612 \mathrm{H}-3613 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3614 \mathrm{H}-3615 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3616 \mathrm{H}-3617 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3618 \mathrm{H}-3619 \mathrm{H}$	Ep_q1(Sharp) Ep_q1(Peak) Ep_q1(Valley) Ep_q1(Normal) Ep_q1(Total)	0~999999999	Dword	R/W
361AH-361BH		0~999999999	Dword	R/W
361CH-361DH		0~999999999	Dword	R/W
361EH-361FH		0~999999999	Dword	R/W
$3620 \mathrm{H}-3621 \mathrm{H}$		0~999999999	Dword	R/W
$3622 \mathrm{H}-3623 \mathrm{H}$	Ep_q2(Sharp) Ep_q2(Peak) Ep_q2(Valley) Ep_q2(Normal) Ep_q2(Total)	0~999999999	Dword	R/W
$3624 \mathrm{H}-3625 \mathrm{H}$		0~999999999	Dword	R/W
$3626 \mathrm{H}-3627 \mathrm{H}$		0~999999999	Dword	R/W
$3628 \mathrm{H}-3629 \mathrm{H}$		0~999999999	Dword	R/W
362AH-362B		0~999999999	Dword	R/W
362CH-362DH	Ep_q3(Sharp) Ep_q3(Peak) Ep_q3(Valley) Ep_q3(Normal) Ep_q3(Total)	0~999999999	Dword	R/W
$362 \mathrm{EH}-362 \mathrm{FH}$		0~999999999	Dword	R/W
$3630 \mathrm{H}-3631 \mathrm{H}$		0~999999999	Dword	R/W
$3632 \mathrm{H}-3633 \mathrm{H}$		0~999999999	Dword	R/W
$3634 \mathrm{H}-3635 \mathrm{H}$		0~999999999	Dword	R/W
$3636 \mathrm{H}-3637 \mathrm{H}$	Ep_q4(Sharp) Ep_q4(Peak) Ep_q4(Valley) Ep_q4(Normal) Ep_q4(Total)	0~999999999	Dword	R/W
$3638 \mathrm{H}-3639 \mathrm{H}$		0~999999999	Dword	R/W
363AH-363BH		0~999999999	Dword	R/W
363CH-363DH		0~999999999	Dword	R/W
363EH-363FH		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
$3640 \mathrm{H}-3641 \mathrm{H}$	Inductive Reactive Energy(Sharp) Inductive Reactive Energy(Peak) Inductive Reactive Energy(Valley) Inductive Reactive Energy(Normal) Inductive Reactive Energy(Total)	0~999999999	Dword	R/W
$3642 \mathrm{H}-3643 \mathrm{H}$		0~999999999	Dword	R/W
$3644 \mathrm{H}-3645 \mathrm{H}$		0~999999999	Dword	R/W
$3646 \mathrm{H}-3647 \mathrm{H}$		0~999999999	Dword	R/W
$3648 \mathrm{H}-3649 \mathrm{H}$		0~999999999	Dword	R/W
364AH-364BH	Capacitive Reactive Energy (Sharp) Capacitive Reactive Energy (Peak) Capacitive Reactive Energy (Valley) Capacitive Reactive Energy (Normal) Capacitive Reactive Energy (Total)	0~999999999	Dword	R/W
364CH-364DH		0~999999999	Dword	R/W
364EH-364FH		0~999999999	Dword	R/W
$3650 \mathrm{H}-3651 \mathrm{H}$		0~999999999	Dword	R/W
$3652 \mathrm{H}-3653 \mathrm{H}$		0~999999999	Dword	R/W
$3654 \mathrm{H}-3655 \mathrm{H}$	Eq_total(Sharp) Eq_total(Peak) Eq_total(Valley) Eq_total(Normal) Eq_total(Total)	0~999999999	Dword	R/W
3656H-3657H		0~999999999	Dword	R/W
$3658 \mathrm{H}-3659 \mathrm{H}$		0~999999999	Dword	R/W
365AH-365BH		0~999999999	Dword	R/W
365CH-365DH		0~999999999	Dword	R/W
365EH-365FH	Eq_net(Sharp) Eq_net(Peak) Eq_net(Valley) Eq_net(Normal) Eq_net(Total)	-999999999~999999999	Dword	R/W
$3660 \mathrm{H}-3661 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3662 \mathrm{H}-3663 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3664 \mathrm{H}-3665 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3666 \mathrm{H}-3667 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3668 \mathrm{H}-3669 \mathrm{H}$	Eq_q1(Sharp) Eq_q1(Peak) Eq_q1(Valley) Eq_q1(Normal) Eq_q1(Total)	0~999999999	Dword	R/W
366AH-366BH		0~999999999	Dword	R/W
366CH-366DH		0~999999999	Dword	R/W
366EH-366FH		0~999999999	Dword	R/W
3670H-3671H		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
3672H-3673H	Eq_q2(Sharp) Eq_q2(Peak) Eq_q2(Valley) Eq_q2(Normal) Eq_q2(Total)	0~999999999	Dword	R/W
$3674 \mathrm{H}-3675 \mathrm{H}$		0~999999999	Dword	R/W
3676H-3677H		0~999999999	Dword	R/W
$3678 \mathrm{H}-3679 \mathrm{H}$		0~999999999	Dword	R/W
367AH-367BH		0~999999999	Dword	R/W
367CH-367DH	Eq_q3(Sharp) Eq_q3(Peak) Eq_q3(Valley) Eq_q3(Normal) Eq_q3(Total)	0~999999999	Dword	R/W
367EH-367FH		0~999999999	Dword	R/W
3680H-3681H		0~999999999	Dword	R/W
$3682 \mathrm{H}-3683 \mathrm{H}$		0~999999999	Dword	R/W
$3684 \mathrm{H}-3685 \mathrm{H}$		0~999999999	Dword	R/W
$3686 \mathrm{H}-3687 \mathrm{H}$	Eq_q4(Sharp) Eq_q4(Peak) Eq_q4(Valley) Eq_q4(Normal) Eq_q4(Total)	0~999999999	Dword	R/W
$3688 \mathrm{H}-3689 \mathrm{H}$		0~999999999	Dword	R/W
368AH-368BH		0~999999999	Dword	R/W
368CH-368DH		0~999999999	Dword	R/W
368EH-368FH		0~999999999	Dword	R/W
$3690 \mathrm{H}-3691 \mathrm{H}$	Es_imp(Sharp) Es_imp(Peak) Es_imp(Valley) Es_imp(Normal) Es_imp(Total)	0~999999999	Dword	R/W
$3692 \mathrm{H}-3693 \mathrm{H}$		0~999999999	Dword	R/W
3694H-3695H		0~999999999	Dword	R/W
$3696 \mathrm{H}-3697 \mathrm{H}$		0~999999999	Dword	R/W
$3698 \mathrm{H}-3699 \mathrm{H}$		0~999999999	Dword	R/W
369AH-369BH	Es_exp(Sharp) Es_exp(Peak) Es_exp(Valley) Es_exp(Normal) Es_exp(Total)	0~999999999	Dword	R/W
369CH-369DH		0~999999999	Dword	R/W
369EH-369FH		0~999999999	Dword	R/W
36A0H-36A1H		0~999999999	Dword	R/W
36A2H-36A3H		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
36A4H-36A5H	Es_total(Sharp) Es_total(Peak) Es_total(Valley) Es_total(Normal) Es_total(Total)	0~999999999	Dword	R/W
36A6H-36A7H		0~999999999	Dword	R/W
36A8H-36A9H		0~999999999	Dword	R/W
36AAH-36ABH		0~999999999	Dword	R/W
36ACH-36ADH		0~999999999	Dword	R/W
36AEH-36AFH	Es_net(Sharp) Es_net(Peak) Es_net(Valley) Es_net(Normal) Es_net(Total)	-999999999~999999999	Dword	R/W
36B0H-36B1H		-999999999~999999999	Dword	R/W
36B2H-36B3H		-999999999~999999999	Dword	R/W
36B4H-36B5H		-999999999~999999999	Dword	R/W
36B6H-36B7H		-999999999~999999999	Dword	R/W
$36 \mathrm{B8H}-36 \mathrm{B9H}$	Es_q1(Sharp) Es_q1(Peak) Es_q1(Valley) Es_q1(Normal) Es_q1(Total)	0~999999999	Dword	R/W
36BAH-36BBH		0~999999999	Dword	R/W
36BCH-36BDH		0~999999999	Dword	R/W
36BEH-36BFH		0~999999999	Dword	R/W
$36 \mathrm{COH}-36 \mathrm{C} 1 \mathrm{H}$		0~999999999	Dword	R/W
$36 \mathrm{C} 2 \mathrm{H}-36 \mathrm{C} 3 \mathrm{H}$	Es_q2(Sharp) Es_q2(Peak) Es_q2(Valley) Es_q2(Normal) Es_q2(Total)	0~999999999	Dword	R/W
$36 \mathrm{C} 4 \mathrm{H}-36 \mathrm{C} 5 \mathrm{H}$		0~999999999	Dword	R/W
$36 \mathrm{C} 6 \mathrm{H}-36 \mathrm{C} 7 \mathrm{H}$		0~999999999	Dword	R/W
$36 \mathrm{C} 8 \mathrm{H}-36 \mathrm{C} 9 \mathrm{H}$		0~999999999	Dword	R/W
36CAH-36CBH		0~999999999	Dword	R/W
36CCH-36CDH	Es_q3(Sharp) Es_q3(Peak) Es_q3(Valley) Es_q3(Normal) Es_q3(Total)	0~999999999	Dword	R/W
36CEH-36CFH		0~999999999	Dword	R/W
36D0H-36D1H		0~999999999	Dword	R/W
36D2H-36D3H		0~999999999	Dword	R/W
36D4H-36D5H		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
36D6H-36D7H	Es_q4(Sharp) Es_q4(Peak) Es_q4(Valley) Es_q4(Normal) Es_q4(Total)	0~999999999	Dword	R/W
36D8H-36D9H		0~999999999	Dword	R/W
36DAH-36DBH		0~999999999	Dword	R/W
36DCH-36DDH		0~999999999	Dword	R/W
36DEH-36DFH		0~999999999	Dword	R/W
Current Month (Incremental)(High Byte in Most, Low Byte in last)				
$3800 \mathrm{H}-3801 \mathrm{H}$	Import Energy Ep_imp(Sharp) Import Energy Ep_imp(Peak) Import Energy Ep_imp(Valley) Import Energy Ep_imp(Normal) Import Energy Ep_imp(Total)	0~999999999	Dword	R/W
$3802 \mathrm{H}-3803 \mathrm{H}$		0~999999999	Dword	R/W
$3804 \mathrm{H}-3805 \mathrm{H}$		0~999999999	Dword	R/W
3806H-3807H		0~999999999	Dword	R/W
$3808 \mathrm{H}-3809 \mathrm{H}$		0~999999999	Dword	R/W
380AH-380BH	Export Energy Ep_exp(Sharp) Export Energy Ep_exp(Peak) Export Energy Ep_exp(Valley) Export Energy Ep_exp(Normal) Export Energy Ep_exp(Total)	0~999999999	Dword	R/W
380CH-380DH		0~999999999	Dword	R/W
380EH-380FH		0~999999999	Dword	R/W
$3810 \mathrm{H}-3811 \mathrm{H}$		0~999999999	Dword	R/W
$3812 \mathrm{H}-3813 \mathrm{H}$		0~999999999	Dword	R/W
$3814 \mathrm{H}-3815 \mathrm{H}$	Total Energy Ep_total(Sharp) Total Energy Ep_total(Peak) Total Energy Ep_total(Valley) Total Energy Ep_total(Normal) Total Energy Ep_total(Total)	0~999999999	Dword	R/W
3816H-3817H		0~999999999	Dword	R/W
$3818 \mathrm{H}-3819 \mathrm{H}$		0~999999999	Dword	R/W
381AH-381BH		0~999999999	Dword	R/W
381CH-381DH		0~999999999	Dword	R/W
$381 \mathrm{EH}-381 \mathrm{FH}$	Net Energy Ep_Net(Sharp) Net Energy Ep_Net(Peak) Net Energy Ep_Net(Valley) Net Energy Ep_Net(Normal) Net Energy Ep_Net(Total)	-999999999~999999999	Dword	R/W
$3820 \mathrm{H}-3821 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3822 \mathrm{H}-3823 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3824 \mathrm{H}-3825 \mathrm{H}$		-999999999~999999999	Dword	R/W
3826H-3827H		-999999999~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
$3828 \mathrm{H}-3829 \mathrm{H}$	Ep_q1(Sharp) Ep_q1(Peak) Ep_q1(Valley) Ep_q1(Normal) Ep_q1(Total)	0~999999999	Dword	R/W
382AH-382BH		0~999999999	Dword	R/W
382CH-382DH		0~999999999	Dword	R/W
382EH-382FH		0~999999999	Dword	R/W
$3830 \mathrm{H}-3831 \mathrm{H}$		0~999999999	Dword	R/W
$3832 \mathrm{H}-3833 \mathrm{H}$	Ep_q2(Sharp) Ep_q2(Peak) Ep_q2(Valley) Ep_q2(Normal) Ep_q2(Total)	0~999999999	Dword	R/W
$3834 \mathrm{H}-3835 \mathrm{H}$		0~999999999	Dword	R/W
$3836 \mathrm{H}-3837 \mathrm{H}$		0~999999999	Dword	R/W
$3838 \mathrm{H}-3839 \mathrm{H}$		0~999999999	Dword	R/W
383AH-383BH		0~999999999	Dword	R/W
383CH-383DH	Ep_q3(Sharp) Ep_q3(Peak) Ep_q3(Valley) Ep_q3(Normal) Ep_q3(Total)	0~999999999	Dword	R/W
383EH-383FH		0~999999999	Dword	R/W
$3840 \mathrm{H}-3841 \mathrm{H}$		0~999999999	Dword	R/W
$3842 \mathrm{H}-3843 \mathrm{H}$		0~999999999	Dword	R/W
3844H-3845H		0~999999999	Dword	R/W
3846H-3847H	Ep_q4(Sharp) Ep_q4(Peak) Ep_q4(Valley) Ep_q4(Normal) Ep_q4(Total)	0~999999999	Dword	R/W
$3848 \mathrm{H}-3849 \mathrm{H}$		0~999999999	Dword	R/W
384AH-384BH		0~999999999	Dword	R/W
384CH-384DH		0~999999999	Dword	R/W
384EH-384FH		0~999999999	Dword	R/W
$3850 \mathrm{H}-3851 \mathrm{H}$	Inductive Reactive Energy(Sharp) Inductive Reactive Energy(Peak) Inductive Reactive Energy(Valley) Inductive Reactive Energy(Normal) Inductive Reactive Energy(Total)	0~999999999	Dword	R/W
3852H-3853H		0~999999999	Dword	R/W
3854H-3855H		0~999999999	Dword	R/W
3856H-3857H		0~999999999	Dword	R/W
3858H-3859H		0~999999999	Dword	R/W

Address	Parameter		Data Range	Data	Type of
type					
access					

Address	Parameter		Data Range	Data type
	Type of			
access				

Address	Parameter	Data Range	Data type	Type of access
38BEH-38BFH	Net Apparent Energy Es_net(Sharp) Net Apparent Energy Es_net(Peak) Net Apparent Energy Es_net(Valley) Net Apparent Energy Es_net (Normal) Net Apparent Energy Es_net(Total)	-999999999~999999999	Dword	R/W
$38 \mathrm{COH}-38 \mathrm{C} 1 \mathrm{H}$		-999999999~999999999	Dword	R/W
$38 \mathrm{C} 2 \mathrm{H}-38 \mathrm{C} 3 \mathrm{H}$		-999999999~999999999	Dword	R/W
$38 \mathrm{C} 4 \mathrm{H}-38 \mathrm{C} 5 \mathrm{H}$		-999999999 999999999	Dword	R/W
38C6H-38C7H		-999999999~999999999	Dword	R/W
$38 \mathrm{C} 8 \mathrm{H}-38 \mathrm{C} 9 \mathrm{H}$	Es_q1(Sharp) Es_q1(Peak) Es_q1(Valley) Es_q1(Normal) Es_q1(Total)	0~999999999	Dword	R/W
38CAH-38CBH		0~999999999	Dword	R/W
38CCH-38CDH		0~999999999	Dword	R/W
38CEH-38CFH		0~999999999	Dword	R/W
38D0H-38D1H		0~999999999	Dword	R/W
38D2H-38D3H	Es_q2(Sharp) Es_q2(Peak) Es_q2(Valley) Es_q2(Normal) Es_q2(Total)	0~999999999	Dword	R/W
38D4H-38D5H		0~999999999	Dword	R/W
38D6H-38D7H		0~999999999	Dword	R/W
38D8H-38D9H		0~999999999	Dword	R/W
38DAH-38DBH		0~999999999	Dword	R/W
38DCH-38DDH	Es_q3(Sharp) Es_q3(Peak) Es_q3(Valley) Es_q3(Normal) Es_q3(Total)	0~999999999	Dword	R/W
38DEH-38DFH		0~999999999	Dword	R/W
$38 \mathrm{EOH}-38 \mathrm{E} 1 \mathrm{H}$		0~999999999	Dword	R/W
$38 \mathrm{E} 2 \mathrm{H}-38 \mathrm{E} 3 \mathrm{H}$		0~999999999	Dword	R/W
$38 \mathrm{E} 4 \mathrm{H}-38 \mathrm{E} 5 \mathrm{H}$		0~999999999	Dword	R/W
$38 \mathrm{E} 6 \mathrm{H}-38 \mathrm{E} 7 \mathrm{H}$	Es_q4(Sharp) Es_q4(Peak) Es_q4(Valley) Es_q4(Normal) Es_q4(Total)	0~999999999	Dword	R/W
$38 \mathrm{E} 8 \mathrm{H}-38 \mathrm{E} 9 \mathrm{H}$		0~999999999	Dword	R/W
38EAH-38EBH		0~999999999	Dword	R/W
38ECH-38EDH		0~999999999	Dword	R/W
38EEH-38EFH		0~999999999	Dword	R/W
Prior Month(Incremental)(High Byte in Most, Low Byte in last)				

Address	Parameter	Data Range	Data type	Type of access
38F0H-38F1H	Import Energy Ep_imp(Sharp) Import Energy Ep_imp(Peak) Import Energy Ep_imp(Valley) Import Energy Ep_imp(Normal) Import Energy Ep_imp(Total)	0~999999999	Dword	R/W
$38 \mathrm{~F} 2 \mathrm{H}-38 \mathrm{~F} 3 \mathrm{H}$		0~999999999	Dword	R/W
$38 \mathrm{~F} 4 \mathrm{H}-38 \mathrm{~F} 5 \mathrm{H}$		0~999999999	Dword	R/W
$38 \mathrm{~F} 6 \mathrm{H}-38 \mathrm{F7H}$		0~999999999	Dword	R/W
38F8H-38F9H		0~999999999	Dword	R/W
38FAH-38FBH	Export Energy Ep_exp(Sharp) Export Energy Ep_exp(Peak) Export Energy Ep_exp(Valley) Export Energy Ep_exp(Normal) Export Energy Ep_exp(Total)	0~999999999	Dword	R/W
38FCH-38FDH		0~999999999	Dword	R/W
38FEH-38FFH		0~999999999	Dword	R/W
$3900 \mathrm{H}-3901 \mathrm{H}$		0~999999999	Dword	R/W
$3902 \mathrm{H}-3903 \mathrm{H}$		0~999999999	Dword	R/W
$3904 \mathrm{H}-3905 \mathrm{H}$	Total Energy Ep_total(Sharp) Total Energy Ep_total(Peak) Total Energy Ep_total(Valley) Total Energy Ep_total(Normal) Total Energy Ep_total(Total)	0~999999999	Dword	R/W
$3906 \mathrm{H}-3907 \mathrm{H}$		0~999999999	Dword	R/W
$3908 \mathrm{H}-3909 \mathrm{H}$		0~999999999	Dword	R/W
390AH-390BH		0~999999999	Dword	R/W
390CH-390DH		0~999999999	Dword	R/W
390EH-390FH	Net Energy Ep_Net(Sharp) Net Energy Ep_Net(Peak) Net Energy Ep_Net(Valley) Net Energy Ep_Net(Normal) Net Energy Ep_Net(Total)	-999999999~999999999	Dword	R/W
3910H-3911H		-999999999~999999999	Dword	R/W
$3912 \mathrm{H}-3913 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3914 \mathrm{H}-3915 \mathrm{H}$		-999999999~999999999	Dword	R/W
3916H-3917H		-999999999~999999999	Dword	R/W
$3918 \mathrm{H}-3919 \mathrm{H}$	Ep_q1(Sharp) Ep_q1(Peak) Ep_q1(Valley) Ep_q1(Normal) Ep_q1(Total)	0~999999999	Dword	R/W
391AH-391BH		0~999999999	Dword	R/W
391CH-391DH		0~999999999	Dword	R/W
391EH-391FH		0~999999999	Dword	R/W
$3920 \mathrm{H}-3921 \mathrm{H}$		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
3922H-3923H	Ep_q2(Sharp) Ep_q2(Peak) Ep_q2(Valley) Ep_q2(Normal) Ep_q2(Total)	0~999999999	Dword	R/W
$3924 \mathrm{H}-3925 \mathrm{H}$		0~999999999	Dword	R/W
$3926 \mathrm{H}-3927 \mathrm{H}$		0~999999999	Dword	R/W
$3928 \mathrm{H}-3929 \mathrm{H}$		0~999999999	Dword	R/W
392AH-392B		0~999999999	Dword	R/W
392CH-392DH	Ep_q3(Sharp) Ep_q3(Peak) Ep_q3(Valley) Ep_q3(Normal) Ep_q3(Total)	0~999999999	Dword	R/W
392EH-392FH		0~999999999	Dword	R/W
$3930 \mathrm{H}-3931 \mathrm{H}$		0~999999999	Dword	R/W
$3932 \mathrm{H}-3933 \mathrm{H}$		0~999999999	Dword	R/W
$3934 \mathrm{H}-3935 \mathrm{H}$		0~999999999	Dword	R/W
$3936 \mathrm{H}-3937 \mathrm{H}$	Ep_q4(Sharp) Ep_q4(Peak) Ep_q4(Valley) Ep_q4(Normal) Ep_q4(Total)	0~999999999	Dword	R/W
$3938 \mathrm{H}-3939 \mathrm{H}$		0~999999999	Dword	R/W
393AH-393BH		0~999999999	Dword	R/W
$393 \mathrm{CH}-393 \mathrm{DH}$		0~999999999	Dword	R/W
393EH-393FH		0~999999999	Dword	R/W
$3940 \mathrm{H}-3941 \mathrm{H}$	Inductive Reactive Energy(Sharp) Inductive Reactive Energy(Peak) Inductive Reactive Energy(Valley) Inductive Reactive Energy(Normal) Inductive Reactive Energy(Total)	0~999999999	Dword	R/W
$3942 \mathrm{H}-3943 \mathrm{H}$		0~999999999	Dword	R/W
$3944 \mathrm{H}-3945 \mathrm{H}$		0~999999999	Dword	R/W
$3946 \mathrm{H}-3947 \mathrm{H}$		0~999999999	Dword	R/W
$3948 \mathrm{H}-3949 \mathrm{H}$		0~999999999	Dword	R/W
394AH-394BH	Capacitive Reactive Energy (Sharp) Capacitive Reactive Energy (Peak) Capacitive Reactive Energy (Valley) Capacitive Reactive Energy (Normal) Capacitive Reactive Energy (Total)	0~999999999	Dword	R/W
394CH-394DH		0~999999999	Dword	R/W
394EH-394FH		0~999999999	Dword	R/W
$3950 \mathrm{H}-3951 \mathrm{H}$		0~999999999	Dword	R/W
$3952 \mathrm{H}-3953 \mathrm{H}$		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
3954H-3955H	Total Reactive Energy Eq_total (Sharp) Total Reactive Energy Eq_total(Peak) Total Reactive Energy Eq_total (Valley) Total Reactive Energy Eq_total (Normal) Total Reactive Energy Eq_total(Total)	0~999999999	Dword	R/W
$3956 \mathrm{H}-3957 \mathrm{H}$		0~999999999	Dword	R/W
$3958 \mathrm{H}-3959 \mathrm{H}$		0~999999999	Dword	R/W
395AH-395BH		0~999999999	Dword	R/W
395CH-395DH		0~999999999	Dword	R/W
$395 \mathrm{EH}-395 \mathrm{FH}$	Net Reactive Energy Eq_net(Sharp) Net Reactive EnergyEq_net(Peak) Net Reactive EnergyEq_net(Valley) Net Reactive EnergyEq_net(Normal) Net Reactive EnergyEq_net(Total)	-999999999~999999999	Dword	R/W
$3960 \mathrm{H}-3961 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3962 \mathrm{H}-3963 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3964 \mathrm{H}-3965 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3966 \mathrm{H}-3967 \mathrm{H}$		-999999999~999999999	Dword	R/W
$3968 \mathrm{H}-3969 \mathrm{H}$	Eq_q1(Sharp) Eq_q1(Peak) Eq_q1(Valley) Eq_q1(Normal) Eq_q1(Total)	0~999999999	Dword	R/W
396AH-396BH		0~999999999	Dword	R/W
396CH-396DH		0~999999999	Dword	R/W
396EH-396FH		0~999999999	Dword	R/W
3970H-3971H		0~999999999	Dword	R/W
$3972 \mathrm{H}-3973 \mathrm{H}$	Eq_q2(Sharp) Eq_q2(Peak) Eq_q2(Valley) Eq_q2(Normal) Eq_q2(Total)	0~999999999	Dword	R/W
$3974 \mathrm{H}-3975 \mathrm{H}$		0~999999999	Dword	R/W
$3976 \mathrm{H}-3977 \mathrm{H}$		0~999999999	Dword	R/W
$3978 \mathrm{H}-3979 \mathrm{H}$		0~999999999	Dword	R/W
397AH-397BH		0~999999999	Dword	R/W
397CH-397DH	Eq_q3(Sharp) Eq_q3(Peak) Eq_q3(Valley) Eq_q3(Normal) Eq_q3(Total)	0~999999999	Dword	R/W
397EH-397FH		0~999999999	Dword	R/W
$3980 \mathrm{H}-3981 \mathrm{H}$		0~999999999	Dword	R/W
$3982 \mathrm{H}-3983 \mathrm{H}$		0~999999999	Dword	R/W
3984H-3985H		0~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
3986H-3987H	Eq_q4(Sharp) Eq_q4(Peak) Eq_q4(Valley) Eq_q4(Normal) Eq_q4(Total)	0~999999999	Dword	R/W
$3988 \mathrm{H}-3989 \mathrm{H}$		0~999999999	Dword	R/W
398AH-398BH		0~999999999	Dword	R/W
398CH-398DH		0~999999999	Dword	R/W
398EH-398FH		0~999999999	Dword	R/W
$3990 \mathrm{H}-3991 \mathrm{H}$	Import Apparent Energy Es_imp (Sharp) Import Apparent Energy Es_imp (Peak) Import Apparent Energy Es_imp (Valley) Es_imp(Normal) Import Apparent Energy Es_imp (Total)	0~999999999	Dword	R/W
3992H-3993H		0~999999999	Dword	R/W
3994H-3995H		0~999999999	Dword	R/W
3996H-3997H		0~999999999	Dword	R/W
$3998 \mathrm{H}-3999 \mathrm{H}$		0~999999999	Dword	R/W
399AH-399BH	Export Apparent Energy Es_exp (Sharp) Export Apparent Energy Es_exp (Peak) Export Apparent Energy Es_exp (Valley) Export Apparent Energy Es_exp (Normal) Export Apparent Energy Es_exp (Total)	0~999999999	Dword	R/W
399CH-399DH		0~999999999	Dword	R/W
399EH-399FH		0~999999999	Dword	R/W
39A0H-39A1H		0~999999999	Dword	R/W
39A2H-39A3H		0~999999999	Dword	R/W
39A4H-39A5H	Total Apparent Energy Es_total (Sharp) Total Apparent Energy Es_total(Peak) Total Apparent Energy Es_total (Valley) Total Apparent Energy Es_total (Normal) Total Apparent Energy Es_total (Total)	0~999999999	Dword	R/W
39A6H-39A7H		0~999999999	Dword	R/W
39A8H-39A9H		0~999999999	Dword	R/W
39AAH-39ABH		0~999999999	Dword	R/W
39ACH-39ADH		0~999999999	Dword	R/W
39AEH-39AFH	Net Apparent Energy Es_net(Sharp) Net Apparent Energy Es_net(Peak) Net Apparent Energy Es_net(Valley) Net Apparent Energy Es_net (Normal) Net Apparent Energy Es_net(Total)	-999999999~999999999	Dword	R/W
39B0H-39B1H		-999999999~999999999	Dword	R/W
39B2H-39B3H		-999999999~999999999	Dword	R/W
39B4H-39B5H		-999999999~999999999	Dword	R/W
39B6H-39B7H		-999999999~999999999	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
39B8H-39B9H	Es_q1(Sharp) Es_q1(Peak) Es_q1(Valley) Es_q1(Normal) Es_q1(Total)	0~999999999	Dword	R/W
39BAH-39BBH		0~999999999	Dword	R/W
39BCH-39BDH		0~999999999	Dword	R/W
39BEH-39BFH		0~999999999	Dword	R/W
$39 \mathrm{COH}-39 \mathrm{C} 1 \mathrm{H}$		0~999999999	Dword	R/W
$39 \mathrm{C} 2 \mathrm{H}-39 \mathrm{C} 3 \mathrm{H}$	Es_q2(Sharp) Es_q2(Peak) Es_q2(Valley) Es_q2(Normal) Es_q2(Total)	0~999999999	Dword	R/W
$39 \mathrm{C} 4 \mathrm{H}-39 \mathrm{C} 5 \mathrm{H}$		0~999999999	Dword	R/W
$39 \mathrm{C} 6 \mathrm{H}-39 \mathrm{C} 7 \mathrm{H}$		0~999999999	Dword	R/W
$39 \mathrm{C} 8 \mathrm{H}-39 \mathrm{C} 9 \mathrm{H}$		0~999999999	Dword	R/W
39CAH-39CBH		0~999999999	Dword	R/W
39CCH-39CDH	Es_q3(Sharp) Es_q3(Peak) Es_q3(Valley) Es_q3(Normal) Es_q3(Total)	0~999999999	Dword	R/W
39CEH-39CFH		0~999999999	Dword	R/W
39D0H-39D1H		0~999999999	Dword	R/W
39D2H-39D3H		0~999999999	Dword	R/W
39D4H-39D5H		0~999999999	Dword	R/W
39D6H-39D7H	Es_q4(Sharp) Es_q4(Peak) Es_q4(Valley) Es_q4(Normal) Es_q4(Total)	0~999999999	Dword	R/W
39D8H-39D9H		0~999999999	Dword	R/W
39DAH-39DBH		0~999999999	Dword	R/W
39DCH-39DDH		0~999999999	Dword	R/W
39DEH-39DFH		0~999999999	Dword	R/W

The daily energy.
Function code: 03 H for reading. The address table as below.
Table 5-27 Daily Energy

Address	Parameter	Data Range	Data type	Type of access
$3 \mathrm{COOH}-3 \mathrm{C} 01 \mathrm{H}$	Ep_imp(Yesterday)	$0 \sim 999999999$	Dword	R/W
$3 \mathrm{CO2H}-3 \mathrm{C} 03 \mathrm{H}$	Ep_exp(Yesterday)	$0 \sim 999999999$	Dword	R/W

Address	Parameter	Data Range	Data type	Type of access
$3 \mathrm{C} 04 \mathrm{H}-3 \mathrm{C} 05 \mathrm{H}$	Ep_total(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 06 \mathrm{H}-3 \mathrm{C} 07 \mathrm{H}$	Ep_net(Yesterday)	-999999999~999999999	Dword	R/W
$3 \mathrm{C} 08 \mathrm{H}-3 \mathrm{C} 09 \mathrm{H}$	Ep_q1(Yesterday)	0~999999999	Dword	R/W
3C0AH-3C0BH	Ep_q2(Yesterday)	0~999999999	Dword	R/W
3C0CH-3CODH	Ep_q3(Yesterday)	0~999999999	Dword	R/W
3C0EH-3COFH	Ep_q4(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 10 \mathrm{H}-3 \mathrm{C} 11 \mathrm{H}$	Eq_imp(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 12 \mathrm{H}-3 \mathrm{C} 13 \mathrm{H}$	Eq_exp(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 14 \mathrm{H}-3 \mathrm{C} 15 \mathrm{H}$	Eq_total(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 16 \mathrm{H}-3 \mathrm{C} 17 \mathrm{H}$	Eq_net(Yesterday)	-999999999~999999999	Dword	R/W
$3 \mathrm{C} 18 \mathrm{H}-3 \mathrm{C} 19 \mathrm{H}$	Eq_q1(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 1 \mathrm{AH}-3 \mathrm{C} 1 \mathrm{BH}$	Eq_q2(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 1 \mathrm{CH}-3 \mathrm{C} 1 \mathrm{DH}$	Eq_q3(Yesterday)	0~999999999	Dword	R/W
3C1EH-3C1FH	Eq_q4(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 20 \mathrm{H}-3 \mathrm{C} 21 \mathrm{H}$	Es_imp(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 22 \mathrm{H}-3 \mathrm{C} 23 \mathrm{H}$	ES_exp(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 24 \mathrm{H}-3 \mathrm{C} 25 \mathrm{H}$	Es_total(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 26 \mathrm{H}-3 \mathrm{C} 27 \mathrm{H}$	Es_net(Yesterday)	-999999999~999999999	Dword	R/W
$3 \mathrm{C} 28 \mathrm{H}-3 \mathrm{C} 29 \mathrm{H}$	Es_q1(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 2 \mathrm{AH}-3 \mathrm{C} 2 \mathrm{BH}$	Es_q2(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 2 \mathrm{CH}-3 \mathrm{C} 2 \mathrm{DH}$	Es_q3(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 2 \mathrm{EH}-3 \mathrm{C} 2 \mathrm{FH}$	Es_q4(Yesterday)	0~999999999	Dword	R/W
$3 \mathrm{C} 30 \mathrm{H}-3 \mathrm{C} 5 \mathrm{FH}$	Daily Energy(The day before yesterday)	Same As Above	Dword	R/W
$3 \mathrm{C} 60 \mathrm{H}-3 \mathrm{C} 8 \mathrm{FH}$	Daily Energy(Three days ago)	Same As Above	Dword	R/W
$3 \mathrm{C} 90 \mathrm{H}-3 \mathrm{CBFH}$	Daily Energy(Four days ago)	Same As Above	Dword	R/W
$3 \mathrm{CCOH}-3 \mathrm{CEFH}$	Daily Energy(Five days ago)	Same As Above	Dword	R/W
3CFOH-3D1FH	Daily Energy(Six days ago)	Same As Above	Dword	R/W
3D20H-3D4FH	Daily Energy(Seven days ago)	Same As Above	Dword	R/W

The maximum demand of power, reactive power, apparent power and currents
which in the different rates can be accessed by communication.
Function code: 03 H for reading. The address table as below.
Table 5-28 TOU maximum demand parameters address table

Address	Parameter	Data Range	Data type	Type of access
3 BOOH	Time Stamp-Year of Max Import Power demand(Sharp)	00~99	word	R
	Time Stamp-Month of Max Import Power demand(Sharp)	1~12		R
3B01H	Time Stamp-Day of Max Import Power demand(Sharp)	1~31	word	R
	Time Stamp-Hour of Max Import Power demand(Sharp)	0~23		R
$3 \mathrm{BO2H}$	Time Stamp-Minute of Max Import Power demand(Sharp)	0~59	word	R
	Time Stamp-Second of Max Import Power demand(Sharp)	0~59		R
3B03H	Max Import Power demand(Sharp)	-32768~32767	Integer	R
3B04H-3B07H	Time Stamp and Max Import Power Demand(Peak) Time Stamp and Max Import Power Demand(Valley) Time Stamp and Max Import Power Demand(Normal) Time Stamp and Max Import Power Demand(Total)	Same As Above	Integer	R
3B08H-3B0BH		Same As Above	Integer	R
3B0CH-3B0FH		Same As Above	Integer	R
3B10H-3B13H		Same As Above	Integer	R
3B14H-3B17H	Time Stamp and Max Export Power Demand(Sharp) Time Stamp and Max Export Power Demand(Peak) Time Stamp and Max Export Power Demand(Valley) Time Stamp and Max Export Power Demand(Normal) Time Stamp and Max Export Power Demand(Total)	Same As Above	Integer	R
3B18H-3B1BH		Same As Above	Integer	R
3B1CH-3B1FH		Same As Above	Integer	R
3B20H-3B23H		Same As Above	Integer	R
3B24H-3B27H		Same As Above	Integer	R

Address	Parameter	Data Range	Data type	Type of access
3B28H-3B2BH	Time Stamp and Max Inductive Reactive Demand(Sharp) Time Stamp and Max Inductive ReactiveDemand(Peak) Time Stamp and Max Inductive Reactive Demand(Valley) Time Stamp and Max Inductive Reactive Demand(Normal) Time Stamp and Max Inductive Reactive Demand(Total)	Same As Above	Integer	R
3B2CH-3B2FH		Same As Above	Integer	R
3B30H-3B33H		Same As Above	Integer	R
3B34H-3B37H		Same As Above	Integer	R
3B38H-3B3BH		Same As Above	Integer	R
3B3CH-3B3FH	Time Stamp and Max Capacitive Reactive Demand(Sharp) Time Stamp and Max Capacitive ReactiveDemand(Peak) Time Stamp and Max Capacitive Reactive Demand(Valley) Time Stamp and Max Capacitive Reactive Demand(Normal) Time Stamp and Max Capacitive Reactive Demand(Total)	Same As Above	Integer	R
3B40H-3B43H		Same As Above	Integer	R
3B44H-3B47H		Same As Above	Integer	R
3B48H-3B4BH		Same As Above	Integer	R
3B4CH-3B4FH		Same As Above	Integer	R
3B50H-3B53H	Time Stamp and Max Import Apparent Demand(Sharp) Time Stamp and Max Import Apparent Demand(Peak) Time Stamp and Max Import Apparent Demand(Valley) Time Stamp and Max Import Apparent Demand(Normal) Time Stamp and Max Import Apparent Demand(Total)	Same As Above	Integer	R
3B54H-3B57H		Same As Above	Integer	R
3B58H-3B5BH		Same As Above	Integer	R
3B5CH-3B5FH		Same As Above	Integer	R
3B60H-3B63H		Same As Above	Integer	R

Address	Parameter	Data Range	Data type	Type of access
3B64H-3B67H	Time Stamp and Max Export Apparent Demand(Sharp) Time Stamp and Max Export Apparent Demand(Peak) Time Stamp and Max Export Apparent Demand(Valley) Time Stamp and Max Export Apparent Demand(Normal) Time Stamp and Max Export Apparent Demand(Total)	Same As Above	Integer	R
3B68H-3B6BH		Same As Above	Integer	R
3B6CH-3B6FH		Same As Above	Integer	R
3B70H-3B73H		Same As Above	Integer	R
3B74H-3B77H		Same As Above	Integer	R
3B78H-3B7BH	Time Stamp and Max 11 Demand(Sharp) Time Stamp and Max 11 Demand(Peak) Time Stamp and Max 11 Demand(Valley) Time Stamp and Max 11 Demand(Normal) Time Stamp and Max I1 Demand(Total)	Same As Above	Integer	R
3B7CH-3B7FH		Same As Above	Integer	R
3B80H-3B83H		Same As Above	Integer	R
3B84H-3B87H		Same As Above	Integer	R
$3 \mathrm{~B} 88 \mathrm{H}-3 \mathrm{B8BH}$		Same As Above	Integer	R
3B8CH-3B8FH	Time Stamp and Max 12 Demand(Sharp) Time Stamp and Max 12 Demand(Peak) Time Stamp and Max 12 Demand(Valley) Time Stamp and Max 12 Demand(Normal) Time Stamp and Max 12 Demand(Total)	Same As Above	Integer	R
$3 \mathrm{B90H}-3 \mathrm{B93H}$		Same As Above	Integer	R
3B94H-3B97H		Same As Above	Integer	R
3B98H-3B9BH		Same As Above	Integer	R
3B9CH-3B9FH		Same As Above	Integer	R
3BAOH-3BA3H	Time Stamp and Max I3 Demand(Sharp) Time Stamp and Max 13 Demand(Peak) Time Stamp and Max 13 Demand(Valley) Time Stamp and Max I3 Demand(Normal) Time Stamp and Max 13 Demand(Total)	Same As Above	Integer	R
3BA4H-3BA7H		Same As Above	Integer	R
3BA8H-3BABH		Same As Above	Integer	R
3BACH-3BAFH		Same As Above	Integer	R
3BBOH-3BB3H		Same As Above	Integer	R

Address	Parameter	Data Range	Data type	Type of access
			Same As Above	Integer

Data address of TOU parameter setting includes basis parameter of TOU, time zone setting parameter of TOU, time table setting parameter of TOU and holiday setting parameter of TOU. Function: 03 H for reading, 10 H for writing.

Table 5-29 TOU parameter address table

Address	Parameter	Data Range	Data typeType of access	
Sharing power setting parameters: 03H read; 10H Write				
1120 H	The Number of Season	$0 \sim 12$	Word	R/W
1121 H	The Number of TOU Schedule	$0 \sim 14$	Word	R/W
1122 H	The Number of TOU Segment	$0 \sim 14$	Word	R/W
1123 H	The Number of Tariff	$0 \sim 3$	Word	R/W
1124 H	Weekend setting	0~127(bit0---Sun: bit1~bit6: Mon \sim Sat; 0:Disable; 1:Enable)	Word	R/W
1125 H	Weekend Schedule	$0-14$	Word	R/W
1126 H	Holiday Setting	$0-30$	Word	R/W
1127 H	Enable Tou	1:Enable; Others:Disable	Word	R/W
1128 H	Restore to Defaults	1:Enable; Others:Disable	Word	R/W
1129 H	Monthly Billing Mode	0:End of Month; 1:Assign	Word	R/W
112 AH	Billing Time - Day	1~28	Word	R/W
112 BH	Billing Time - Hour	$0 \sim 23$	Word	R/W
112 CH	Billing Time - Minute	$0 \sim 59$	Word	R/W
112 DH	Billing Time - Second	$0 \sim 59$	Word	R/W

Address	Parameter	Data Range	Data type	Type of access
112EH	Fault Status Word	0:No Error; 1: Tariff Error; 2: Season Error; 4: Segment Error; 8: The Number of Season Error; 16: Season Setting Error; 32: The Number of Holiday Error; 64: Holiday Setting Error; 256: Tariff In TOU Schedule Error; 512: Time In TOU Schedule Error; 1024: Time Segment In TOU Schedule Error; 2048: Weekend Schedule Error; 4096: Weekend Error	Word	R
112FH	Enable Holiday Years Setting	1:Enable; 0:Disable	Word	R/W
1130H	Start Year of Holiday Years		Word	R/W
1131H	End Year of Holiday Years		Word	R/W
$\begin{aligned} & 1140 \mathrm{H}- \\ & 1142 \mathrm{H} \end{aligned}$	TOU Seasons 1 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & \text { 1143H- } \\ & 1145 \mathrm{H} \end{aligned}$	TOU Seasons 2 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & \hline 1146 \mathrm{H}- \\ & 1148 \mathrm{H} \end{aligned}$	TOU Seasons 3 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & 1149 \mathrm{H}- \\ & 114 \mathrm{BH} \end{aligned}$	TOU Seasons 4 Start Time(Month, Day and Hour)		Word	R/W
$\begin{gathered} \hline 114 \mathrm{CH}- \\ 114 \mathrm{EH} \end{gathered}$	TOU Seasons 5 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & \text { 114FH- } \\ & 1151 \mathrm{H} \end{aligned}$	TOU Seasons 6 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & \hline 1152 \mathrm{H}- \\ & 1154 \mathrm{H} \end{aligned}$	TOU Seasons 7 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & \hline 1155 \mathrm{H}- \\ & 1157 \mathrm{H} \end{aligned}$	TOU Seasons 8 Start Time(Month, Day and Hour)		Word	R/W

Address	Parameter	Data Range	Data type	Type of access
$\begin{gathered} \hline 1158 \mathrm{H}- \\ 115 \mathrm{~A} \end{gathered}$	TOU Seasons 9 Start Time(Month, Day and Hour)		Word	R/W
$\begin{gathered} \hline 115 \mathrm{BH}- \\ 115 \mathrm{D} \end{gathered}$	TOU Seasons 10 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & \hline 115 \mathrm{EH}- \\ & 1160 \mathrm{H} \end{aligned}$	TOU Seasons 11 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & 1161 \mathrm{H}- \\ & 1163 \mathrm{H} \end{aligned}$	TOU Seasons 12 Start Time(Month, Day and Hour)		Word	R/W
$\begin{aligned} & \hline 1164 \mathrm{H}- \\ & 1166 \mathrm{H} \end{aligned}$	First TOU Schedule 1 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & \hline 1167 \mathrm{H}- \\ & 1169 \mathrm{H} \end{aligned}$	First TOU Schedule 2 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & 116 \mathrm{AH}- \\ & 116 \mathrm{CH} \end{aligned}$	First TOU Schedule 3 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{gathered} \hline 116 \mathrm{DH}- \\ 116 \mathrm{FH} \end{gathered}$	First TOU Schedule 4 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{array}{c\|} \hline 1170 \mathrm{H}- \\ 1172 \mathrm{H} \end{array}$	First TOU Schedule 5 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & \hline 1173 \mathrm{H}- \\ & 1175 \mathrm{H} \end{aligned}$	First TOU Schedule 6 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & 1176 \mathrm{H}- \\ & 1178 \mathrm{H} \end{aligned}$	First TOU Schedule 7 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & 1179 \mathrm{H}- \\ & 117 \mathrm{BH} \end{aligned}$	First TOU Schedule 8 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & \hline 117 \mathrm{CH}- \\ & 117 \mathrm{EH} \end{aligned}$	First TOU Schedule 9 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & \text { 117FH- } \\ & 1181 \mathrm{H} \end{aligned}$	First TOU Schedule 10 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & 1182 \mathrm{H}- \\ & 1184 \mathrm{H} \end{aligned}$	First TOU Schedule 11 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & \hline 1185 \mathrm{H}- \\ & 1187 \mathrm{H} \end{aligned}$	First TOU Schedule 12 Segment Start Time(Hour, Minute and Tariff)		Word	R/W

Address	Parameter	Data Range	Data type	Type of access
$\begin{aligned} & 1188 \mathrm{H}- \\ & 118 \mathrm{AH} \end{aligned}$	First TOU Schedule 13 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & \hline 118 \mathrm{BH}- \\ & 118 \mathrm{DH} \end{aligned}$	First TOU Schedule 14 Segment Start Time(Hour, Minute and Tariff)		Word	R/W
$\begin{aligned} & 118 \mathrm{EH}- \\ & 11 \mathrm{~B} 7 \mathrm{H} \end{aligned}$	Second TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & 11 \mathrm{~B} 8 \mathrm{H}- \\ & 11 \mathrm{E} 1 \mathrm{H} \end{aligned}$	Third TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{gathered} \hline 11 \mathrm{E} 2 \mathrm{H}- \\ 120 \mathrm{~B} \end{gathered}$	Fourth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & \hline 120 \mathrm{CH}- \\ & 1235 \mathrm{H} \end{aligned}$	Fifth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & 1236 \mathrm{H}- \\ & 125 \mathrm{FH} \end{aligned}$	Sixth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & \hline 1260 \mathrm{H}- \\ & 1289 \mathrm{H} \end{aligned}$	Seventh TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & \hline 128 \mathrm{AH}- \\ & 12 \mathrm{~B} 3 \mathrm{H} \end{aligned}$	Eighth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & 12 \mathrm{~B} 4 \mathrm{H}- \\ & 12 \mathrm{DDH} \end{aligned}$	Ninth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & \text { 12DEH- } \\ & \text { 1307H } \end{aligned}$	Tenth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & 1308 \mathrm{H}- \\ & 1331 \mathrm{H} \end{aligned}$	Eleventh TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & 1332 \mathrm{H}- \\ & 135 \mathrm{BH} \end{aligned}$	Twelfth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & \hline 135 \mathrm{CH}- \\ & 1385 \mathrm{H} \end{aligned}$	Thirteenth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & 1386 \mathrm{H}- \\ & 13 \mathrm{AFH} \end{aligned}$	Fourteenth TOU Schedule 1~14 Segment Start Time(Hour, Minute and Tariff)	Same As First TOU Schedule	Word	R/W
$\begin{aligned} & 13 \mathrm{BOH}- \\ & 13 \mathrm{~B} 2 \mathrm{H} \end{aligned}$	Holidays 1 Table (Month, Day and The Number of TOU Schedule)		Word	R/W

Address	Parameter	Data Range	Data type	Type of access
$\begin{aligned} & \text { 13B3H- } \\ & 13 \mathrm{~B} 5 \mathrm{H} \end{aligned}$	Holidays 2 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & 13 \mathrm{~B} 6 \mathrm{H} \\ & 13 \mathrm{~B} 8 \mathrm{H} \end{aligned}$	Holidays 3 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \text { 13B9H- } \\ & \text { 13BBH } \end{aligned}$	Holidays 4 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{array}{\|l\|} \hline \text { 13BCH- } \\ \text { 13BEH } \end{array}$	Holidays 5 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \hline 13 \mathrm{BFH}- \\ & 13 \mathrm{C} 1 \mathrm{H} \end{aligned}$	Holidays 6 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{array}{\|l\|} \hline 13 \mathrm{C} 2 \mathrm{H}- \\ 13 \mathrm{C} 4 \mathrm{H} \\ \hline \end{array}$	Holidays 7 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \hline 13 \mathrm{C} 5 \mathrm{H}- \\ & 13 \mathrm{C} 7 \mathrm{H} \end{aligned}$	Holidays 8 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \hline 13 \mathrm{C} 8 \mathrm{H}- \\ & 13 \mathrm{CAH} \end{aligned}$	Holidays 9 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{array}{\|l\|} \hline 13 \mathrm{CBH}- \\ \text { 13CDH } \\ \hline \end{array}$	Holidays 10 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{array}{\|l\|} \hline 13 \mathrm{CEH}- \\ 13 \mathrm{DOH} \end{array}$	Holidays 11 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{array}{\|l\|} \hline \text { 13D1H- } \\ \text { 13D3H } \end{array}$	Holidays 12 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \text { 13D4H- } \\ & \text { 13D6H } \end{aligned}$	Holidays 13 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \text { 13D7H- } \\ & \text { 13D9H } \end{aligned}$	Holidays 14 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{array}{\|l\|} \hline \text { 13DAH- } \\ \text { 13DCH } \end{array}$	Holidays 15 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{array}{\|c\|} \hline \text { 13DDH- } \\ \text { 13DFH } \end{array}$	Holidays 16 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \hline 13 \mathrm{EOH}- \\ & 13 \mathrm{E} 2 \mathrm{H} \end{aligned}$	Holidays 17 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{array}{\|l\|} \hline 13 \mathrm{E} 3 \mathrm{H}- \\ \text { 13E5H } \\ \hline \end{array}$	Holidays 18 Table (Month, Day and The Number of TOU Schedule)		Word	R/W

Address	Parameter	Data Range	Data type	Type of access
$\begin{aligned} & 13 \mathrm{E} 6 \mathrm{H}- \\ & 13 \mathrm{E} 8 \mathrm{H} \end{aligned}$	Holidays 19 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & 13 \mathrm{E} 9 \mathrm{H}- \\ & 13 \mathrm{EBH} \end{aligned}$	Holidays 20 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \hline 13 \mathrm{ECH}- \\ & 13 \mathrm{EEH} \end{aligned}$	Holidays 21 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \hline \text { 13EFH- } \\ & \text { 13F1H } \end{aligned}$	Holidays 22 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \hline 13 \mathrm{~F} 2 \mathrm{H}- \\ & 13 \mathrm{~F} 4 \mathrm{H} \end{aligned}$	Holidays 23 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \text { 13F5H- } \\ & \text { 13F7H } \end{aligned}$	Holidays 24 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & 13 \mathrm{~F} 8 \mathrm{H}- \\ & 13 \mathrm{FAH} \end{aligned}$	Holidays 25 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \text { 13FBH- } \\ & 13 \mathrm{FDH} \end{aligned}$	Holidays 26 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & \text { 13FEH- } \\ & 1400 \mathrm{H} \end{aligned}$	Holidays 27 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & 1401 \mathrm{H}- \\ & 1403 \mathrm{H} \end{aligned}$	Holidays 28 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{gathered} 1404 \mathrm{H}- \\ 1406 \mathrm{H} \end{gathered}$	Holidays 29 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
$\begin{aligned} & 1407 \mathrm{H}- \\ & 1409 \mathrm{H} \end{aligned}$	Holidays 30 Table (Month, Day and The Number of TOU Schedule)		Word	R/W
140AH- 14FFH	Reserve		Word	R/W

The address area include ten years holiday setting, Function: 03H for reading, 10H for writing.

Table5-30 Data address of ten years holiday

Address	Parameter	Data Type	Type of access
First Year Holidays; 03H read; 10H Write			
$1500 \mathrm{H}-1502 \mathrm{H}$	Holiday 1Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1503 \mathrm{H}-1505 \mathrm{H}$	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1506 \mathrm{H}-1508 \mathrm{H}$	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1509 \mathrm{H}-150 \mathrm{BH}$	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
150CH-150EH	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
150FH-1511H	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1512 \mathrm{H}-1514 \mathrm{H}$	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1515 \mathrm{H}-1517 \mathrm{H}$	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
1518H-151AH	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
151BH-151DH	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
$151 \mathrm{EH}-1520 \mathrm{H}$	Holiday 11 Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1521 \mathrm{H}-1523 \mathrm{H}$	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1524 \mathrm{H}-1526 \mathrm{H}$	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
1527H-152AH	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
152AH-152CH	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
152DH-152FH	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1530 \mathrm{H}-1532 \mathrm{H}$	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1533 \mathrm{H}-1535 \mathrm{H}$	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1536 \mathrm{H}-1538 \mathrm{H}$	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
1539H-153B	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
153CH-153EH	Holiday 21 Table(Month, Day and The Number of TOU Schedule)	word	R/W
153FH-1541H	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1542 \mathrm{H}-1544 \mathrm{H}$	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1545 \mathrm{H}-1547 \mathrm{H}$	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1548 \mathrm{H}-154 \mathrm{AH}$	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
154BH-154D	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
154EH-1550H	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1551 \mathrm{H}-1553 \mathrm{H}$	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
1554H-1556H	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
1557H-1559H	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
155AH	The First Year	word	R/W
155BH	The Amount Number of Holidays in First Year	word	R/W
Second Year Holidays; 03H read; 10H Write			
155CH-155EH	Holiday 1Table(Month, Day and The Number of TOU Schedule)	word	R/W
155FH-1561H	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
1562H-1564H	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
1565H-1567H	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
1568H-156AH	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
156BH-156DH	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
156EH-1570H	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
1571H-1573H	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
1574H-1576H	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
1577H-1579H	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
157AH-157C	Holiday 11 Table(Month, Day and The Number of TOU Schedule)	word	R/W
157DH-157FH	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
1580H-1582H	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
1583H-1585H	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
1586H-1588H	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
1589H-158BH	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
158CH-158EH	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
158FH-1591H	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
1592H-1594H	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
1595H-1597H	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
1598H-159AH	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W
159BH-159DH	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
159EH-15A0H	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
15A1H-15A3H	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
15A4H-15A6H	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
15A7H-15A9H	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
15AAH-15ACH	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
15ADH-15AFH	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
15B0H-15B2H	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
15B3H-15B5H	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
15B6H	The Second Year	word	R/W
15B7H	The Amount Number of Holidays in Second Year	word	R/W
Third Year Holidays; 03H read; 10H Write			
15B8H-15BAH	Holiday 1Table(Month, Day and The Number of TOU Schedule)	word	R/W
15BBH-15BDH	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
15BEH-15COH	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
15C1H-15C3H	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
15C4H-15C6H	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
15C7H-15C9H	Holiday 6Table(Month, Day and The Number of TOU Schedule)	wor	R/W
15CAH-15CBH	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
15CDH-15CFH	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
15D0H-15D2H	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
15D3H-15D5H	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
15D6H-15D8H	Holiday 11Table(Month, Day and The Number of TOU Schedule)	word	R/W
15D9H-15DBH	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
15DCH-15DEH	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
15DFH-15E1H	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
15E2H-15E4H	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
15E5H-15E7H	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
15E8H-15EAH	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
15EBH-15EDH	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
15EEH-15FOH	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
15F1H-15F3H	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
15F4H-15F6H	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W
15F7H-15F9H	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
15FAH-15FCH	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
15FDH-15FFH	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
1600H-1602H	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
1603H-1605H	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
1606H-1608H	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
1609H-160BH	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
160CH-160EH	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
160FH-1611H	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
1612 H	The Third Year	word	R/W
1613 H	The Amount Number of Holidays in Third Year	word	R/W
Fourth Year Holidays; 03H read; 10H Write			
1614H-1616H	Holiday 1Table(Month, Day and The Number of TOU Schedule)	word	R/W
1617H-1619H	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
161AH-161CH	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
161DH-161FH	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
1620H-1622H	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1623 \mathrm{H}-1625 \mathrm{H}$	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
1626H-1628H	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
1629H-162B	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
162CH-162EH	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
162FH-1631H	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1632 \mathrm{H}-1634 \mathrm{H}$	Holiday 11Table(Month, Day and The Number of TOU Schedule)	word	R/W
1635H-1637H	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
1638H-163AH	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
163BH-163DH	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
163EH-1640H	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
1641H-1643H	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
1644H-1646H	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
1647H-1649H	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
164AH-164CH	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
164DH-164FH	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
1650H-1652H	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
$1653 \mathrm{H}-1655 \mathrm{H}$	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1656 \mathrm{H}-1658 \mathrm{H}$	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1659 \mathrm{H}-165 \mathrm{BH}$	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
$165 \mathrm{CH}-165 \mathrm{EH}$	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
$165 \mathrm{FH}-1661 \mathrm{H}$	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1662 \mathrm{H}-1664 \mathrm{H}$	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1665 \mathrm{H}-1667 \mathrm{H}$	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1668 \mathrm{H}-166 \mathrm{AH}$	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
$166 \mathrm{BH}-166 \mathrm{DH}$	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
166EH	The Fourth Year	word	R/W
166FH	The Amount Number of Holidays in Fourth Year	word	R/W
Fifth Year Holidays; 03H read; 10H Write			
$1670 \mathrm{H}-1672 \mathrm{H}$	Holiday 1 Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1673 \mathrm{H}-1675 \mathrm{H}$	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1676 \mathrm{H}-1678 \mathrm{H}$	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1679 \mathrm{H}-167 \mathrm{BH}$	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
$167 \mathrm{CH}-167 \mathrm{EH}$	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
$167 \mathrm{FH}-1681 \mathrm{H}$	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1682 \mathrm{H}-1684 \mathrm{H}$	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1685 \mathrm{H}-1687 \mathrm{H}$	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1688 \mathrm{H}-168 \mathrm{AH}$	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
168BH-168DH	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
$168 \mathrm{EH}-1690 \mathrm{H}$	Holiday 11 Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1691 \mathrm{H}-1693 \mathrm{H}$	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1694 \mathrm{H}-1696 \mathrm{H}$	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1697 \mathrm{H}-1699 \mathrm{H}$	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
169AH-169CH	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
169DH-169FG	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
16A0H-16A2H	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
16A3H-16A5H	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
16A6H-16A8H	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
16A9H-16ABH	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
16ACH-16AE	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W
16AFH-16B1H	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
16B2H-16B4H	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
16B5H-16B7H	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
16B8H-16BAH	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
16BBH-16BDH	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
16BEH-16COH	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
16C1H-16C3H	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
16C4H-16C6H	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
16C7H-16C9H	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
16CAH	The Fifth Year	word	R/W
16CBH	The Amount Number of Holidays in Fifth Year	wo	R/W
Sixth Year Holidays; 03H read; 10H Write			
16CCH-16CEH	Holiday 1 Table(Month, Day and The Number of TOU Schedule)	word	R/W
16CFH-16D1H	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
16D2H-16D4H	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
16D5H-16D7H	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
16D8H-16DAH	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
16DBH-16DDH	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
16DEH-16EOH	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
16E1H-16E3H	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
16E4H-16E6H	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
16E7H-16E9H	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
16EAH-16ECH	Holiday 11Table(Month, Day and The Number of TOU Schedule)	word	R/W
16EDH-16EFH	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
16FOH-16F2H	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
16F3H-16F5H	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
16F6H-16F8H	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
16F9H-16FBH	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
16FCH-16FEH	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
16FFH-1701H	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1702 \mathrm{H}-1704 \mathrm{H}$	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
1705H-1707H	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
1708H-170AH	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W
170BH-170DH	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
170EH-1710H	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1711 \mathrm{H}-1713 \mathrm{H}$	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
1714H-1716H	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
1717H-1719H	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
171AH-171CH	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
171DH-171FH	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1720 \mathrm{H}-1722 \mathrm{H}$	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1723 \mathrm{H}-1725 \mathrm{H}$	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
1726H	The Sixth Year	word	R/W
1727H	The Amount Number of Holidays in Sixth Year	word	R/W
Seventh Year Holidays; 03H read; 10H Write			
1728H-172AH	Holiday 1Table(Month, Day and The Number of TOU Schedule)	word	R/W
172BH-172DH	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
172EH-1730H	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
1731H-1733H	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
1734H-1736H	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
1737H-1739H	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
173AH-173CH	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
173DH-173FH	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
1740H-1742H	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
1743H-1745H	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
1746H-1748H	Holiday 11Table(Month, Day and The Number of TOU Schedule)	word	R/W
1749H-174BH	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
174CH-174EH	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
174FH-1751H	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1752 \mathrm{H}-1754 \mathrm{H}$	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
1755H-1757H	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
1758H-175AH	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
175BH-175DH	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
$175 \mathrm{EH}-1760 \mathrm{H}$	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1761 \mathrm{H}-1763 \mathrm{H}$	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1764 \mathrm{H}-1766 \mathrm{H}$	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1767 \mathrm{H}-1769 \mathrm{H}$	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
176AH-176CH	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
176DH-176FH	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1770 \mathrm{H}-1772 \mathrm{H}$	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1773 \mathrm{H}-1775 \mathrm{H}$	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1776 \mathrm{H}-1778 \mathrm{H}$	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1779 \mathrm{H}-177 \mathrm{BH}$	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
$177 \mathrm{CH}-177 \mathrm{EH}$	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
177FH-1781H	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
1782 H	The Seventh Year	word	R/W
1783 H	The Amount Number of Holidays in Seventh Year	word	R/W
Eighth Year Holidays; 03H read; 10H Write			
1784H-1786H	Holiday 1Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1787 \mathrm{H}-1789 \mathrm{H}$	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
178AH-178CH	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
178DH-178FH	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1790 \mathrm{H}-1792 \mathrm{H}$	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1793 \mathrm{H}-1795 \mathrm{H}$	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1796 \mathrm{H}-1798 \mathrm{H}$	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
1799H-179BH	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
179CH-179EH	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
179FH-17A1H	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
17A2H-17A4H	Holiday 11 Table(Month, Day and The Number of TOU Schedule)	word	R/W
17A5H-17A7H	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
17A8H-17AAH	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
17ABH-17ADH	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
17AEH-17B0H	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
$17 \mathrm{~B} 1 \mathrm{H}-17 \mathrm{~B} 3 \mathrm{H}$	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
$17 \mathrm{~B} 4 \mathrm{H}-17 \mathrm{~B} 6 \mathrm{H}$	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
17B7H-17B9H	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
$17 \mathrm{BAH}-17 \mathrm{BCH}$	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
17BDH-17BFH	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
$17 \mathrm{COH}-17 \mathrm{C} 2 \mathrm{H}$	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W
$17 \mathrm{C} 3 \mathrm{H}-17 \mathrm{C} 5 \mathrm{H}$	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
$17 \mathrm{C} 6 \mathrm{H}-17 \mathrm{C} 8 \mathrm{H}$	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
$17 \mathrm{C} 9 \mathrm{H}-17 \mathrm{CBH}$	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
17CCH-17CDH	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
17CFH-17D1H	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
17D2H-17D4H	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
17D5H-17D7H	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
17D8H-17DAH	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
17DBH-17DDH	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
17DEH	The Eighth Year	word	R/W
17DFH	The Amount Number of Holidays in Eighth Year	word	R/W
Ninth Year Holidays; 03H read; 10H Write			
17E0H-17E2H	Holiday 1Table(Month, Day and The Number of TOU Schedule)	word	R/W
17E3H-17E5H	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
17E6H-17E8H	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
17E9H-17EBH	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
17ECH-17EEH	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
17EFH-17F1H	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
17F2H-17F4H	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
17F5H-17F7H	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
17F8H-17FAH	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W
17FBH-17FDH	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
17FEH-1800H	Holiday 11 Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
1801H-1803H	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
1804H-1806H	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
1807H-1809H	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
180AH-180CH	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
180DH-180FH	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
1810H-1812H	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
1813H-1815H	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
1816H-1818H	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
1819H-181BH	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
181CH-181EH	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W
181FH-1821H	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1822 \mathrm{H}-1824 \mathrm{H}$	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
1825H-2827H	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
1828H-182A	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
182BH-182DH	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
182EH-1830H	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
1831H-1833H	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
1834H-1836H	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
1837H-1839H	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
183 AH	The Ninth Year	word	R/W
183BH	The Amount Number of Holidays in Ninth Year	word	R/W
Tenth Year Holidays; 03H read; 10H Write			
183CH-183EH	Holiday 1 Table(Month, Day and The Number of TOU Schedule)	word	R/W
183FH-1841H	Holiday 2Table(Month, Day and The Number of TOU Schedule)	word	R/W
1842H-1844H	Holiday 3Table(Month, Day and The Number of TOU Schedule)	word	R/W
1845H-1847H	Holiday 4Table(Month, Day and The Number of TOU Schedule)	word	R/W
1848H-184AH	Holiday 5Table(Month, Day and The Number of TOU Schedule)	word	R/W
184BH-184DH	Holiday 6Table(Month, Day and The Number of TOU Schedule)	word	R/W
184EH-1850H	Holiday 7Table(Month, Day and The Number of TOU Schedule)	word	R/W
1851H-1853H	Holiday 8Table(Month, Day and The Number of TOU Schedule)	word	R/W
1854H-1856H	Holiday 9Table(Month, Day and The Number of TOU Schedule)	word	R/W

Address	Parameter	Data Type	Type of access
$1857 \mathrm{H}-1859 \mathrm{H}$	Holiday 10Table(Month, Day and The Number of TOU Schedule)	word	R/W
$185 \mathrm{AH}-185 \mathrm{CH}$	Holiday 11Table(Month, Day and The Number of TOU Schedule)	word	R/W
$185 \mathrm{DH}-185 \mathrm{FH}$	Holiday 12Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1860 \mathrm{H}-1862 \mathrm{H}$	Holiday 13Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1863 \mathrm{H}-1865 \mathrm{H}$	Holiday 14Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1866 \mathrm{H}-1868 \mathrm{H}$	Holiday 15Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1869 \mathrm{H}-186 \mathrm{BH}$	Holiday 16Table(Month, Day and The Number of TOU Schedule)	word	R/W
$186 \mathrm{CH}-186 \mathrm{EH}$	Holiday 17Table(Month, Day and The Number of TOU Schedule)	word	R/W
$186 \mathrm{FH}-1871 \mathrm{H}$	Holiday 18Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1872 \mathrm{H}-1874 \mathrm{H}$	Holiday 19Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1875 \mathrm{H}-1877 \mathrm{H}$	Holiday 20Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1878 \mathrm{H}-187 \mathrm{AH}$	Holiday 21Table(Month, Day and The Number of TOU Schedule)	word	R/W
$187 \mathrm{BH}-187 \mathrm{DH}$	Holiday 22Table(Month, Day and The Number of TOU Schedule)	word	R/W
$187 \mathrm{EH}-1880 \mathrm{H}$	Holiday 23Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1881 \mathrm{H}-1883 \mathrm{H}$	Holiday 24Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1884 \mathrm{H}-1886 \mathrm{H}$	Holiday 25Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1887 \mathrm{H}-1889 \mathrm{H}$	Holiday 26Table(Month, Day and The Number of TOU Schedule)	word	R/W
$188 \mathrm{AH}-188 \mathrm{CH}$	Holiday 27Table(Month, Day and The Number of TOU Schedule)	word	R/W
$188 \mathrm{DH}-188 \mathrm{FH}$	Holiday 28Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1890 \mathrm{H}-1892 \mathrm{H}$	Holiday 29Table(Month, Day and The Number of TOU Schedule)	word	R/W
$1893 \mathrm{H}-1895 \mathrm{H}$	Holiday 30Table(Month, Day and The Number of TOU Schedule)	word	R/W
1896 H	The Tenth Year	word	R/W
1897 H	The Amount Number of Holidays in Tenth Year	word	R/W

These setting are for daylight saving time. Function code: 03H for reading, 10 H for writing.

Table 5-31 Daylight saving time parameter address table

Address	Parameter	Range	Data Type	Type of access
1100 H	Enable DST	1:Enable; 0:Disable	Word	R/W
1101 H	DST Format	0 Format $1 ; 1$: Format 2	Word	R/W

Address	Parameter	Range	Data Type	Type of access
Format1				
1102H	DST Start Month	1~12	Word	R/W
1103H	DST Start Day	1~31	Word	R/W
1104H	DST Start House	0~23	Word	R/W
1105H	DST Start Minute	0~59	Word	R/W
1106H	Adjust Time of DST Start(Uint: Minute)	1~120	Word	R/W
1107H	DST Ending Month	1~12	Word	R/W
1108H	DST Ending Day	1~31	Word	R/W
1109H	DST Ending House	0~23	Word	R/W
110AH	DST Ending Minute	0~59	Word	R/W
110BH	Adjust Time of DST Ending(Uint: Minute)	1~120	Word	R/W
Format2				
110CH	DST Start Month	1~12	Word	R/W
110DH	DST Start Day(Mon/Tue/Wed/Thu/Fri/Sat/ Sun)	0: Sun; 1~6: Mon ~ Sat	Word	R/W
110EH	DST Start Week	1~5	Word	R/W
110FH	DST Start House	0~23	Word	R/W
1110 H	DST Start Minute	0~59	Word	R/W
1111H	Adjust Time of DST Start(Uint: Minute)	1~120	Word	R/W
1112H	DST Ending Month	1~12	Word	R/W
1113H	DST Ending Day(Mon/Tue/Wed/Thu/Fri/Sat/ Sun)	0: Sun; 1: 6: Mon ~ Sat	Word	R/W
1114H	DST Ending Week	1~5	Word	R/W
1115H	DST Ending House	0~23	Word	R/W
1116H	DST Ending Minute	0~59	Word	R/W
1117H	Adjust Time of DST Ending(Uint: Minute)	1~120	Word	R/W

Extend IO Setting Area

It includes extend IO communication parameter, DO related parameter and DI related parameter. DO parameters section includes: pulse output and alarm output function options, when set to pulse output functions, including pulse
constant, pulse width and high level of output delay settings; When set to alarm output functions, including alarm delay, alarm conditions and alarm limits set ting. The DI setting contains the DI function selection and pulse constant setting, the bit0-bit3 correspond to the DI1 to DI4 state in the 0×1900 address. If the value of bit0 is 1 , it indicates the DI1 status is pulse counting state. If the value of bit0 is 0 , it indicates the DI1 status is SOE state. Other bit's function is same as bit0.

Table 5-32 Extend IO Parameter setting

Address	Parameter	Range	Data Type	Type of access
1900H	DI Type	Bit0:DI1; Bit1:DI2; Bit2:DI3; Bit3:DI4(0: SOE; 1: Pulse Counter)	Word	R/W
1901H	DI Pulse Constant	1-65535	Word	R/W
1902H	Clear DI Counters	Only OAH Work	Word	R/W
1903H	Work Mode of Do1	0: Pulse Output; 1: Alarm On Channel 1; 2: Alarm On Channel 2; 3: Alarm On Channel 1 and Channel 2; 4: Communication Control	Word	R/W
1904H	Work Mode of Do2	0: Pulse Output; 1: Alarm On Channel 1; 2: Alarm On Channel 2; 3: Alarm On Channel 1 and Channel 2; 4: Communication Control	Word	R/W
1905H	Pulse Constant	1~60000(How Much Pulse is 1Kwh)	Word	R/W
1906H	Do Pulse Width	$20 \sim 3000 \mathrm{~ms}$	Word	R/W
1907H	Do1 Energy Output	0: NONE; 1: Ep_imp; 2: Ep_exp; 3: Eq_imp; 4:Eq_exp	Word	R/W
1908H	Do2 Energy Output	0: NONE; 1: Ep_imp; 2: Ep_exp; 3: Eq_imp; 4: Eq_exp	Word	R/W
1909H	Alarm Delay Time	0~255(300ms)	Word	R/W
190AH	The Alarm Parameter of Channel 1	0~51	Word	R/W
190BH	The Alarm Mode of Channel 1	0<; 1>;	Word	R/W
190CH	The Alarm Threshold of Channel 1	0~65535	Word	R/W
190DH	The Alarm Parameter of Channel 2	0~51	Word	R/W
190EH	The Alarm Mode of Channel 2	0<; 1> ;	Word	R/W
190FH	The Alarm Threshold of Channel 2	0~65535	Word	R/W

Address	Parameter	Range	Data Type	Type of access
1910 H	Alarm Backlight Flash	0: Backlight Flash When Alarm Status; 1: Backlight Don't Flash When Alarm Status	Word	R/W
1911 H	Clear Alarm Record	Only OAH Work	Word	R/W
1912 H	DO output model by communication control	0x01: Level; 0x02: Pulse	Word	R/W

Alarm Parameter:

0:Disable; 1:Frequency; 2:A-Phase Voltage ; 3 :B-Phase Voltage ; 4:B-Phase Voltage; 5:Phase Voltage Average; 6:Line Voltage V12; 7:Line Voltage V23;8:Line Voltage V31; 9: Line Voltage Average; 10:Phase(line)current I1; 11:Phase(line)current I2; 12:Phase(line)current I3; 13:Reversed; 14:Middle line current In; 15:Total Current; 16:Average Current; 17:Phase A power Pa; 18 :Phase B power Pb; 19:Phase C power Pc; 20:System power Pcon; 21:Phase A reactive power Qa; 22:Phase B reactive power Qb; 23: Phase C reactive power Qc; 24:System reactive power Qcon; 25:Phase A Apparent power Sa; 26: Phase B Apparent power Sb; 27:Phase C Apparent power Sc; 28:System Apparent power Scon; 29: Phase A power factor PFa; 30:Phase B power factor PFb; 31:Phase C power factor PFc; 32:System power factor PFcon; 33:Voltage unbalance factor U_unbl; 34:Current unbalance factor I_unbl; 35:Power demand P_DEMA; 36: Reactive Power demand Q_DEMA; 37: Apparent power demand S_DEMA; 38: Phase A current demand la_DEMA; 39:Phase B current demand Ib_DEMA; 40: Phase C current demand Ic_DEMA; 41:Neutral line current demand IN_DEMA; 42:THD_V1; 43: THD_V2; 44:THD_V3; 45:THD_Voltage_ Average; 46:THD_I1; 47:THD_I2; 48:THD_I3; 49:THD_IN; 50:THD_Current_Average; 51 Reverse Phase Sequence.

The address area contains pulse counter number. The pulse counter number could be reserved with power-down, it also could be clear through PC software.

Table 5-33 data address of pulse accumulation

Address	Parameter	Range	Data Type	Type of access	
DI parameter setting area 03H read; 10 H write					
$2160 \mathrm{H}-2161 \mathrm{H}$	DI1 counter number	$0 \sim 4294967295$	Dword	R	
$2162 \mathrm{H}-2163 \mathrm{H}$	DI2 counter number	$0 \sim 4294967295$	Dword	R	
$2164 \mathrm{H}-2165 \mathrm{H}$	DI3 counter number	$0 \sim 4294967295$	Dword	R	
$2166 \mathrm{H}-2167 \mathrm{H}$	DI4 counter number	$0 \sim 4294967295$	Dword	R	

It contains 20 SOE events during 0×3200 and 0×3262 address area, it indicates 1st SOE event address area from 0×3200 to 0×4204, the format as: year-month, day hour, minute-second, millisecond and DI state. The other's format is same as first event.

Table 5-34 SOE event parameter address area

Address	Parameter	Range	Data Type	Type of access
SOE Time recording area03H read				
3200 H	Time Stamp-Year (SOE Record 1) (High)	00~99	word	R
	Time Stamp-Month (SOE Record 1) (Low)	1~12		R
3201H	Time Stamp-Day (SOE Record 1)(High)	1~31	word	R
	Time Stamp-Hours (SOE Record 1) (Low)	0~23		R
3202 H	Time Stamp-Minute (SOE Record 1) (High)	0~59	word	R
	Time Stamp-Second (SOE Record 1) (Low)	0~59		R
3203H	Time Stamp-millisecond (SOE Record 1)	0~999	word	R
3204H	IO block of SOE Record 1	0~15	word	R
$3205 \mathrm{H}-3209 \mathrm{H}$	SOE Record 2	Same As Above	word	R
320AH-320EH	SOE Record 3	Same As Above	word	R
$320 \mathrm{FH}-3213 \mathrm{H}$	SOE Record 4	Same As Above	word	R
$3214 \mathrm{H}-3218 \mathrm{H}$	SOE Record 5	Same As Above	word	R
$3219 \mathrm{H}-321 \mathrm{DH}$	SOE Record 6	Same As Above	word	R
$321 \mathrm{EH}-3222 \mathrm{H}$	SOE Record 7	Same As Above	word	R
$3223 \mathrm{H}-3227 \mathrm{H}$	SOE Record 8	Same As Above	word	R
$3228 \mathrm{H}-322 \mathrm{CH}$	SOE Record 9	Same As Above	word	R
$322 \mathrm{DH}-3231 \mathrm{H}$	SOE Record 10	Same As Above	word	R
$3232 \mathrm{H}-3236 \mathrm{H}$	SOE Record 11	Same As Above	word	R
$3237 \mathrm{H}-323 \mathrm{BH}$	SOE Record 12	Same As Above	word	R

Address	Parameter	Range	Data Type	Type of access
$323 \mathrm{CH}-3240 \mathrm{H}$	SOE Record 13	Same As Above	word	R
$3241 \mathrm{H}-3245 \mathrm{H}$	SOE Record 14	Same As Above	word	R
$3246 \mathrm{H}-324 \mathrm{AH}$	SOE Record 15	Same As Above	word	R
$324 \mathrm{BH}-324 \mathrm{FH}$	SOE Record 16	Same As Above	word	R
$3250 \mathrm{H}-3254 \mathrm{H}$	SOE Record 17	Same As Above	word	R
$3255 \mathrm{H}-3259 \mathrm{H}$	SOE Record 18	Same As Above	word	R
$325 \mathrm{AH}-325 \mathrm{EH}$	SOE Record 19	Same As Above	word	R
$325 \mathrm{FH}-3263 \mathrm{H}$	SOE Record 20	Same As Above	word	R

The address area for the SOE single event reading, through continuous reading of the address area of a single SOE record, achieving the current single SOE records continuously updated to meet the SOE event to read all 20 goals. One address $0 \times 406 \mathrm{H}$, the type of access is read and write, it can achieve the specified single event reading by writing the location of a single SOE records to the address.

Table 5-35 Single SOE event parameter address area

Address	Parameter	Range	Data Type	Type of access
SOE single event recording area: 03 H read; 10 H Write				
32 COH	Time Stamp-Year (SOE Record 1)(High)	00~99	word	R
	Time Stamp-Month (SOE Record 1)(Low)	1~12		
$32 \mathrm{C1H}$	Time Stamp-Day (SOE Record 1)(High)	1~31	word	R
	Time Stamp-Hours (SOE Record 1)(Low)	0~23		
32 C 2 H	Time Stamp-Minute (SOE Record 1)(High)	0~59	word	R
	Time Stamp-Second (SOE Record 1)(Low)	0~59		
32 C 3 H	Time Stamp-millisecond (SOE Record 1)	0~999	word	R
32 C 4 H	IO block of SOE Record 1	0~15	word	R
32 C 5 H	The Last SOE Record Number	0~20	word	R
32 C 6 H	The Number of SOE Records	0~20	word	R/W

Digital Output State

the user can monitor DO state by reading the address area. The function code is 01 H .

Table 5-36 DO State Reading Area

Address	Parameter	Range	Data Type
Function Code:01H for Reading, 05 for Writing			
0000 H	DO1	$1:$ ON; 0: OFF	bit
0001 H	DO2	$1:$ ON; 0: OFF	bit

Digital Input State
The user can monitor DI state by reading the address area. The function code is 02 H .

Table 5-37 DI State Reading Area

Address	Parameter	Range	Data Type
Function Code:02H for Reading			
0000 H	DI1	$1:$ ON; 0: OFF	bit
0001 H	DI2	$1:$ ON; 0: OFF	bit
0002 H	DI3	$1:$ ON; 0: OFF	bit
0003 H	DI4	$1:$ ON; 0: OFF	bit

Some explanations:

1: the data type: "Word" refers to 16 -bit unsigned integer; "Integer" means a 16bit signed integer; "Dword" refers to 32-bit unsigned integer; Float refers to the 32-bit floating-point numbers; ban would be inconsistent with the value range of data write.
2: Type of access: " R " read-only, read the instrument parameters with the command number $03 \mathrm{H} ;$ " R / W " read and write; write command system parameter No. 10H. Prohibits not listed or non-writable attribute address to write to.
3: the measured parameters (address $2000 \mathrm{H} \sim 2030 \mathrm{H}$) Make sure to read relational
data types, value range and the communication value and the actual value. 4: electrical power and instrumentation running time of 32-bit unsigned integer, the upper and lower half and an address. Host software should be high numerical value obtained by multiplying the low energy electrical and instrumentation runtime results on 65536 plus. Electric energy meter and total running time to $1 \times$ 109 will automatically be cleared, re-accumulated. Electrical energy is writable, it can be cleared or preset communication; meter run time can not write, but can communicate with them cleared.

Appendix

Appendix A Technical Data and Specifications
Appendix B Ordering Information
Appendix C Revision History

Appendix A Technical data and Specification

Input

Current Inputs (Each Channel)	
Nominal Current	(1) 5 A, (2) 1 A, (3) $1 \mathrm{~A}(333 \mathrm{mV})$, (4) $1 \mathrm{~A}(100 \mathrm{mV}$ Rope- CT), (5) $1 \mathrm{~A}(80 \mathrm{~mA} / 100 \mathrm{~mA} / 200 \mathrm{~mA})$, (6) $1 \mathrm{~A}(6.68 \mathrm{~mA})$
Metering Range	$\begin{aligned} & \text { (1) } 0 \sim 10 \mathrm{~A},(2) 0 \sim 2 \mathrm{~A},(3) 0 \sim 1.2 \mathrm{~A}, \text { (4) } 0 \sim 1.2 \mathrm{~A}, \\ & \text { (5) } 0 \sim 1.2 \mathrm{~A}, \text {, } 0 \sim 1.2 \mathrm{~A} \end{aligned}$
Pickup Current	(1) 5 mA , (2) 1 mA, (3) 5 mA , (4) 5 mA , (5) 5 mA , (6) 5 mA
Withstand	20Arms continuous 100Arms for 1 second, non-recurring
Burden	0.05VA (typical) @ 5Arms
Accuracy	0.5\%

Voltage Inputs (Each Channel)	
Nominal Full Scale	$400 \mathrm{Vac} \mathrm{L-N,690Vac} \mathrm{L-L} \mathrm{(+20} \mathrm{\%)}$
Withstand	1500 Vac continuous $2500 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$ for 1minute
Input Impedance	2 Mohm per phase
Metering Frequency	$45 \mathrm{~Hz} \mathrm{\sim 65Hz}$
Pickup Voltage	10 Vac
Accuracy	0.5%

Control Power	
AC/DC Control Power	
Operating Range	$100 \sim 415 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 100 \sim 300 \mathrm{Vdc}$
Burden	3 W
Withstand	$3250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$ for 1 minute
Low Voltage DC Control Power (Optional)	
Operating Range	$20 \sim 60 \mathrm{Vdc}$
Burden	3 W

Accuracy

METERING			
Parameters	Accuracy	Resolution	Range
Voltage	0.5%	0.1 V	$20 \mathrm{~V} \sim 1000 \mathrm{kV}$
Current	0.5%	0.001 A	$0 \sim 50000 \mathrm{~A}$
Current Demand	0.5%	0.001 A	$0 \sim 50000 \mathrm{~A}$
Power	0.5%	1 W	$-9999 \sim 9999 \mathrm{MW}$
Reactive Power	0.5%	1 var	$-9999 \sim 9999 \mathrm{Mvar}$
Apparent Power	0.5%	1 VA	$0 \sim 9999 \mathrm{MVA}$
Power Demand	0.5%	1 W	$-9999 \sim 9999 \mathrm{MW}$
Reactive Power Demand	0.5%	1 var	$-9999 \sim 9999 \mathrm{Mvar}$
Apparent Power Demand	0.5%	1 VA	$0 \sim 9999 \mathrm{MVA}$
Power Factor	0.5%	0.001	$-1.0 \sim 1.0$
Frequency	0.2%	0.01 Hz	$45.00 \sim 65.00 \mathrm{~Hz}$
Energy	0.5%	0.1 kWh	$0 \sim 99999999.9 \mathrm{kWh}$
Reactive Energy	0.5%	0.1 kvarh	$0 \sim 99999999.9 \mathrm{kvarh}$
Apparent Energy	0.5%	0.1 VAh	$0 \sim 99999999.9 \mathrm{kVAh}$
Harmonics	1.0%	0.01%	
Meter Running Time		0.1 hrs	$0 \sim 99999999.9 \mathrm{hrs}$
Load Running Time		0.1 hrs	$0 \sim 99999999.9 \mathrm{hrs}$

Standards	
Measuring	IEC 61036 Class 1, ANSI C12.16 Class 10
Environmental	IEC 60068-2
Safety	IEC 61010-1, UL 61010-1
EMC	IEC 61000-4/2-3-4-5-6-8-11
Dimension	DIN 43700/ANSI C39.1

Digital input (DI)	
Input Type	Dry Contact
Input Resistance	$4 \mathrm{k} \Omega$
Pulse Frequency (Max)	$100 \mathrm{~Hz}, 50 \%$ Duty Ratio
SOE Resolution	2 ms

Digital output (DO)(Photo-MOS)

Voltage Range	$0 \sim 250 \mathrm{Vac} / \mathrm{dc}$
Load Current	$100 \mathrm{~mA} \mathrm{(Max)}$
Output Frequency (Max)	$25 \mathrm{~Hz}, 50 \%$ Duty Ratio
Isolation Voltage	2500 V

Communication port
RS-485 (Optional)
Modbus ${ }^{\oplus}$-RTU Protocol
2-wire connection, Half-duplex, Isolated
1200 to 38400 baud rate
Sencond RS485 (Acuvim-CL, Acuvim-DL and Acuvim-EL can optional)
PROFI-BUS (Optional)
PROFIBUS-DP/VO Protocol
Work as PROFIBUS slave, baud rate adaptive, up to 12M
Typical input bytes: 32, typical output bytes: 32
PROFIBUS standard according to EN 50170 vol. 2

Suitable condition

Operating temp. range	$-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$
Storage temp. range	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
Humidity	$5 \% \sim 95 \%$, non condensation

Appendix B Ording Information

Note: 1. Extent Module only support by Acuvim-DL and Acuvim-EL.
2. $X 4$ and $X 6$ two modules, respectively, by $X 1+X 3$ and $X 1$ and $X 5$ composition and $\mathrm{X} 3 / \mathrm{X} 5$ communication module shall be installed close to the body.

Remote Display Option

> REM- $\square-$ DS1: Compatible with Acuvim-L Series "M" (DIN Mount) models only

> Example: REM - DS1

Appendix C Revision History

Revision	Date	Description
1.0	20070915	First version
1.1	20070930	Add primary data address table of Basic measurements data and Statistics measurements data.
1.2	20071109	Add Apparent energy function. See Page 37 and Page 69.
1.3	20090430	Add single phase apparent power, apparent power demand and the max of apparent power demand; Update the ordering information.
1.31	20090515	Add TOU function
1.40	20091023	
1.41	20100401	Add TOU energy Display, TOU maximum demand and Holiday auto-switch.
1.42	20101031	Revise the content
1.43	20110430	Updated appendix part of data
1.44	20110530	DI type modified from wet contact to dry connect; add contents of PROFIBUS module.
1.45	20120725	Update the method for generating CRC value Add a "Note" in page 52.
3.01	20160612	A comprehensive upgrade hardware and software
3.02	20160902	Add daily energy
3.03	20170117	Add Relay Output

Your Power and Automation Partner

